High efficiency orifice plate structure and printhead using...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S045000

Reexamination Certificate

active

06290331

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to printhead structures for use in delivering ink to a substrate, and more particularly to a novel orifice plate designed for attachment to a printhead. The orifice plate includes a number of important structural features which enable high print quality levels to be maintained over the life of the printhead. The printhead and orifice plate are also characterized by improved durability levels.
Substantial developments have been made in the field of electronic printing technology. A wide variety of highly-efficient printing systems currently exist which are capable of dispensing ink in a rapid and accurate manner. Thermal inkjet systems are especially important in this regard. Printing units using thermal inkjet technology basically involve an apparatus which includes at least one ink reservoir chamber in fluid communication with a substrate (preferably made of silicon [Si] and/or other comparable materials) having a plurality of thin-film heating resistors thereon. The substrate and resistors are maintained within a structure that is conventionally characterized as a “printhead”. Selective activation of the resistors causes thermal excitation of the ink materials stored inside the reservoir chamber and expulsion thereof from the printhead. Representative thermal inkjet systems are discussed in U.S. Pat. No. 4,500,895 to Buck et al.; U.S. Pat. No. 4,771,295 to Baker et al.; U.S. Pat. No. 5,278,584 to Keefe et al.; and the
Hewlett-Packard Journal
, Vol. 39, No. 4 (August 1988), all of which are incorporated herein by reference.
In order to effectively deliver ink materials to a selected substrate, thermal inkjet printheads typically include an outer plate member known as a “nozzle plate” or “orifice plate” which includes a plurality of ink ejection orifices (e.g. openings or bores) therethrough. Initially, these orifice plates were manufactured from one or more metallic compositions including but not limited to gold-plated or palladium-plated nickel and similar materials. However, recent developments in thermal inkjet printhead design have also resulted in the production of orifice plates which are produced from a variety of different organic polymers (e.g. plastics) including but not limited to film products consisting of polytetrafluoroethylene (e.g. Teflon®), polyimide, polymethylmethacrylate, polycarbonate, polyester, polyamide, polyethylene-terephthalate, and mixtures thereof. A representative polymeric (e.g. polyimide-based) composition which is suitable for this purpose is a commercial product sold under the trademark “KAPTON” by E.I. du Pont de Nemours & Company of Wilmington, Del. (USA). Orifice plate structures produced from the non-metallic compositions described above are typically uniform in thickness and highly flexible. Likewise, they provide numerous benefits ranging from reduced production costs to a substantial simplification of the overall printhead structure which translates into improved reliability, economy, and ease of manufacture. The fabrication of polymeric/plastic film-type orifice plates and the corresponding production of the entire printhead structure is typically accomplished using conventional tape automated bonding (“TAB”) technology as generally discussed in U.S. Pat. No. 4,944,850 to Dion. Additional information regarding polymeric, non-metallic orifice plates of the type described above is provided in the following U.S. Pat. No. 5,278,584 to Keefe et al. and U.S. Pat. No. 5,305,015 to Schantz et al. (incorporated herein by reference). Also of interest is co-owned U.S. Pat. No. 6,155,675 to Van Nice et al. which is likewise incorporated herein by reference. In this document, a number of approaches are outlined for improving the overall durability of polymeric film-type orifice plates. For example, in one embodiment, a protective coating is applied to the top surface and/or the bottom surface of the orifice plate. Representative coatings include diamond-like carbon (which is also known as “DLC”), at least one layer of metal (e.g. chromium [Cr], nickel [Ni], palladium [Pd], gold [Au], titanium [Ti], tantalum [Ta], aluminum [Al], and mixtures thereof), and/or a selected dielectric material (e.g. silicon nitride [Si
3
N
4
], silicon dioxide [SiO
2
], boron nitride [BN], silicon carbide [SiC], and a composition known as “silicon carbon oxide”). This approach is designed to improve the overall abrasion and deformation resistance of the thin-film orifice plate structure and avoids “dimpling” problems associated with these components (namely, the undesired formation of various indented regions on the orifice plate member). Furthermore, the overall durability of the completed structures is particularly enhanced through the use of DLC and the other compositions recited above.
However, other important factors must also be considered in order to produce a printhead using a non-metallic orifice plate which is capable of generating clear, distinct, and vivid printed images over prolonged time periods. For example, a condition known as “ruffling” or “ruffles” can occur in printheads using thin-film polymeric (e.g. plastic) orifice plates of the type discussed herein. This condition can cause a significant deterioration in print quality if not controlled. Thermal inkjet printers of conventional design typically employ at least one wiper element (normally produced from an elastomeric rubber, plastic, or other comparable material) in order to keep the external surface of the orifice plate clean and free from residual ink and other extraneous matter including paper fibers and the like. A representative wiper system used for this purpose is described in U.S. Pat. No. 5,786,830 to Su et al. which is incorporated herein by reference. Printheads which employ thin-film organic polymer-based orifice plates are often adversely affected by the wiping process. Specifically, passage of the wiper element(s) over this type of orifice plate can cause an “uplifting” of the plate structure along the edges of the orifices, thereby creating a “ruffled” appearance with “ridge”-like structures being formed at the peripheral edges of each orifice. This physical deformation of the orifice plate (and the resulting alteration in orifice geometry/planarity) can cause significant changes in ink drop trajectory, namely, the intended pathway to be followed by the ink drop in order to create the final printed image. These undesired changes in orifice plate geometry prevent the ink drop from travelling in its intended direction. Instead, the drop is expelled improperly and is delivered to an undesired location on the print media material (e.g. paper and/or other substrates). Deformation of the orifice plate as outlined above (including the creation of extraneous “ridge” structures around the peripheral edges of the orifices) can also cause the collection or “puddling” of ink in these regions. This situation can further alter ink drop trajectory by causing an undesired interaction between the ink drop being expelled (particularly the terminal portion of each drop or its “tail”) with collected ink adjacent the orifices. As a result, print quality degradation occurs over time. These problems are again caused by two primary factors, namely, (1) the thin, flexible nature of the organic polymer orifice plates described herein; and (2) the physical forces imposed on the orifice plates by conventional wiper structures (or other objects which may come in contact with the plates).
In summary, numerous adverse conditions are associated with “ruffling” in a thin-film organic polymer-based orifice plate system ranging from a notable deterioration in print quality to a reduced level of printhead longevity and increased maintenance requirements. Prior to completion of the present invention, a need therefore existed for a polymeric (e.g. plastic) orifice plate system which is highly resistant to the effects of repeated wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High efficiency orifice plate structure and printhead using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High efficiency orifice plate structure and printhead using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High efficiency orifice plate structure and printhead using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2480943

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.