Optical waveguides – With optical coupler – Input/output coupler
Reexamination Certificate
2005-04-22
2008-11-18
Connelly-Cushwa, M. R. (Department: 2874)
Optical waveguides
With optical coupler
Input/output coupler
C359S369000
Reexamination Certificate
active
07454103
ABSTRACT:
Lightwave diffraction device formed of a dielectric layer (4), a mirror (12) arranged at the lower face (10) of said layer, a semi-reflective structure (13) arranged at the upper face (100) of said layer, and a diffractive structure (8) arranged in said layer or on its faces. The height (H) of the layer is chosen so as to substantially satisfy the resonance condition for at least one leaky mode propagating in said layer for at least one given incident wave having a determined wavelengthλ and a determined incidence angle θc. Next, the diffractive structure is arranged so that there is no propagating positive diffracted order, and so that all negative orders other than the −1stpropagating order have zero or a relatively small diffraction efficiency, the reflected −1storder propagating in a direction non-parallel to the incident wave. This diffraction device allows a high diffraction efficiency of up to 100% for the −1storder.
REFERENCES:
patent: 4905252 (1990-02-01), Goldberg et al.
patent: 5553088 (1996-09-01), Brauch et al.
patent: 5970190 (1999-10-01), Fu et al.
patent: 6049588 (2000-04-01), Cash, Jr.
patent: 6215928 (2001-04-01), Friesem et al.
patent: 6219478 (2001-04-01), Parriaux et al.
Sychugov, V A et al., “Autocollimation diffractions gratings based on waveguides with leakage modes,” Quantum Electronics 30, 2000, pp. 1094-1098.
Krawczak, John et al., “Diffraction efficiency gain, blazing, and apodizing of a symmetric square reflection grating in an etalon,” Optics Letters, Nov. 15, 1990, pp. 1264-1266.
International Search Report issued in corresponding application No. PCT/EP2005/004357, completed Jul. 11, 2005 and mailed Jul. 26, 2005.
Perry, M.D. et al., “High-efficiency multilayer dielectric diffraction gratings,” Optics Letters, vol. 20, No. 8, Apr. 15, 1995, pp. 940-942.
Wei, Hongobo et al., “All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency,” Applied Optics, vol. 42, No. 31, Nov. 1, 1993, pp. 6255-6260.
M. Svalgaard, “Optical waveguides and gratings made by UV-photogeneration”, Proceedings of the European Conference on Integrated Optics ECIO'99, Turin, Italy, Apr. 1999, pp. 333-338.
J.-D. Decotignie, O. Parriaux, F.E. Gardiol, “Wave propagation in lossy and leaky planar optical waveguides”, AEÜ, Band 35, 1981, pp. 201-204.
I.A. Avrutsky, A.S. Svakhin, V.A. Sychuygov and O. Parriaux, “High-efficiency single-order waveguide grating coupler”, Optics Letters, vol. 15, pp. 1446-1448, 1990.
G.A. Golubenko, A.S. Svakhin, V.A. Sychugov, and A.V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide”, Soviet Journal of Quantum Electronics, vol. 15, 1985, p. 886-887.
N. Matuschek, F.X. Kärtner, U. Keller, “Theory of double-chirped mirrors”, IEEE J. Selected Topics in Quantum Electronics, vol. 4, pp. 197-208, 1998.
J.-M. Verdiell, R. Frey, “A broad-area mode-coupling model for multiple-stripe semiconductor lasers”, IEEE J. Quantum Electronics, vol. 26, 1990, pp. 270-279.
V. Raab, R. Menzel, “External resonator design for high-power laser diodes that yields 400 mW of TEM00 power”, Optics Letters vol. 27, 2002, pp. 167-169.
McLeod, John H., “The Axicon: A New Type of Optical Element,” Journal of The Optical Society of America, vol. 44, No. 8, Aug. 1954, pp. 592-597.
J.H. McLeod, J. Opt. Soc. Am., vol. 44, p. 592, 1954, and as reviewed by Z. Jaroszewicz, A. Burvall, A.T. Friberg, “Axicon—the most important optical element”, Optics & Photonics News, Apr. 2005, pp. 34-39.
E. Noponen, J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory”, J. Opt. Soc. Am, A11, 1994, pp. 1097-1109.
T. Okumura, T. Ishikawa, A. Tagaye, K. Koike, “Optical design of liquid crystal display backlighting with highly scattering optical transmission polymers”, J. Opt. A: Pure and Appl. Opt., vol. 5, 2003, pp. 5269-5275.
J. Jahns, “Planar Integrated Free-space Optics”, Chapter 7, pp. 178-198 of Micro-Optics, Ed. H.P. Herzig, Taylor & Francis, 1997 ISBN 0-7484-0481-3.
T. Shiono, H. Ogawa, “Planar-optic-disk pick up with diffractive micro-optics”, Appl. Opt., vol. 33, 1994, pp. 7350-7355.
S.J. Walker, J. Jahns, “Optical clock distribution using integrated free-space optics”, Optics Communications, vol. 90, 1992, pp. 359-371.
L. Domash, G. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications”, Proc. SPIE, vol. 4107, 2000, pp. 1-13.
A. Rodriguez, G. Vitrant, P.A. Chollet, F. Kajzar, “Optical control of an integrated interferometer using a photochromic polymer”, Appl. Phys. Lett., vol. 79, 2001, pp. 461-463.
H.Kück et al “Deformable micromirror device as phase-modulating high-resolution light valves”, Sensors & Actuators A54, 1996, pp. 536-541.
H. Finkelmann, E. Nishikawa, G. Pereira, “A new opto-mechanical effect in solids”, Phys. Rev. Lett., 8701:(1) 5501-U74, 2001.
J.-Y. Chang, C.-M. Wang, C.-C. Lee, H.-F. Shih, M.-L. Wu, “Realization of free-space optical pickup head with stacked Si-based phase elements”, IEEE Photonics Tech. Lett., vol. 17, 2005, pp. 214-216.
A. Larsson, N. Eriksson, S. Kristjansson, P. Modh, M. Uemukai, T. Suhara, H. Nishihara, “Grating coupled surface emitters : integrated lasers, amplifiers and beam shaping outcouplers”, Proc. SPIE 3626, 1999, pp. 190-201.
Dongwoo Suh, Youngwoo Park, Yeungjoon Sohn, Hesuk Jung, Mun Cheol Paek, Kwangyong Kang, “Optimization of leaky mode directional coupler for the application to a small form factor disk pickup”, OWTNM'05, Apr. 7-9, 2005, Paper FrB2-5, Grenoble, France.
T. Fujii, Y.Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett, 84, 855-857 (2004).
Y.R. Do, Y.C. Kim, Y.-W. Song, C.-O Cho, H. Jeon, Y.-J. Lee, S.-H. Kim, Y.-H. Lee, “Enhanced light extraction from organic light emitting diodes with 2D SiO2/SiNx Photonic crystals”, Adv. Mater., 15, pp. 1214-1218, Jul. 2003.
L.H. Smith, J.A.E. Wasey, W.L. Barnes, “The light out-coupling efficiency of top emitting organic light-emitting diodes”, Appl. Phys. Lett., 84, 2986-2988 (2004).
Connelly-Cushwa M. R.
Griffin & Szipl, P.C.
Rahll Jerry T
LandOfFree
High efficiency optical diffraction device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High efficiency optical diffraction device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High efficiency optical diffraction device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4020777