High-efficiency modulating RF amplifier

Amplifiers – With semiconductor amplifying device – Including plural amplifier channels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C330S051000, C330S251000

Reexamination Certificate

active

06816016

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to RF amplifiers and signal modulation.
2. State of the Art
Battery life is a significant concern in wireless communications devices such as cellular telephones, pagers, wireless modems, etc. Radio-frequency transmission, especially, consumes considerable power. A contributing factor to such power consumption is inefficient power amplifier operation. A typical RF power amplifier for wireless communications operates with only about 10% efficiency. Clearly, a low-cost technique for significantly boosting amplifier efficiency would satisfy an acute need.
Furthermore, most modern digital wireless communications devices operate on a packet basis. That is, the transmitted information is sent in a series of one or more short bursts, where the transmitter is active only during the burst times and inactive at all other times. It is therefore also desirable that control of burst activation and deactivation be controlled in an energy-efficient manner, further contributing to extended battery life.
Power amplifiers are classified into different groups: Class A, Class B, Class AB, etc. The different classes of power amplifiers usually signify different biasing conditions. In designing an RF power amplifier, there is usually a trade-off between linearity and efficiency. The different classes of amplifier operation offer designers ways to balance these two parameters.
Generally speaking, power amplifiers are divided into two different categories, linear and non-linear. Linear amplifiers (e.g. Class A amplifiers and Class B push-pull amplifiers), maintain high linearity, resulting in faithful reproduction of the input signal at their output since the output signal is linearly proportional to the input signal. In non-linear amplifiers (e.g. single-ended Class B and Class C amplifiers), the output signal is not directly proportional to the input signal. The resulting amplitude distortion on the output signal makes these amplifiers most applicable to signals without any amplitude modulation, which are also known as constant-envelope signals.
Amplifier output efficiency is defined as the ratio between the RF output power and the input (DC) power. A major source of power amplifier inefficiency is power dissipated in the transistor. A Class A amplifier is inefficient since current flows continuously through the device. Conventionally, efficiency is improved by trading-off linearity for increased efficiency. In Class B amplifiers, for example, biasing conditions are chosen such that the output signal is cut off during half of the cycle unless the opposing half is provided by a second transistor (push-pull). As a result, the waveform will be less linear. The output waveform may still be made sinusoidal using a tank circuit or other filter to filter out higher and lower frequency components.
Class C amplifiers conduct during less than 50% of the cycle, in order to further increase efficiency; i.e., if the output current conduction angle is less than 180 degrees, the amplifier is referred to as Class C. This mode of operation can have a greater efficiency than Class A or Class B, but it typically creates more distortion than Class A or Class B amplifiers. In the case of a Class C amplifier, there is still some change in output amplitude when the input amplitude is varied. This is because the Class C amplifier operates as a constant current source—albeit one that is only on briefly—and not a switch.
The remaining classes of amplifiers vigorously attack the problem of power dissipation within the transistor, using the transistor merely as a switch. The underlying principle of such amplifiers is that a switch ideally dissipates no power, for there is either zero voltage across it or zero current through it. Since the switch's V-I product is therefore always zero, there is no dissipation in this device. A Class E power amplifier uses a single transistor, in contrast with a Class D power amplifier, which uses two transistors
In real life, however, switches are not ideal. (Switches have turn on/off time and on-resistance.) The associated dissipation degrades efficiency. The prior art has therefore sought for ways to modify so-called “switch-mode” amplifiers (in which the transistor is driven to act as a switch at the operating frequency to minimize the power dissipated while the transistor is conducting current) so that the switch voltage is zero for a non-zero interval of time about the instant of switching, thereby decreasing power dissipation. The Class E amplifier uses a reactive output network that provides enough degrees of freedom to shape the switch voltage to have both zero value and zero slope at switch turn-on, thus reducing switching losses. Class F amplifiers are still a further class of switch-mode amplifiers. Class F amplifiers generate a more square output waveform as compared to the usual sinewave. This “squaring-up” of the output waveform is achieved by encouraging the generation of odd-order harmonics (i.e., ×3, ×5, ×7, etc.) and suppressing the even-order harmonics (i.e., ×2, ×4, etc.) in the output network.
An example of a known power amplifier for use in a cellular telephone is shown in FIG.
1
. GSM cellular telephones, for example, must be capable of programming output power over a 30 dBm range. In addition, the transmitter turn-on and turn-off profiles must be accurately controlled to prevent spurious emissions. Power is controlled directly by the DSP (digital signal processor) of the cellular telephone, via a DAC (digital to analog converter). In the circuit of
FIG. 1
, a signal GCTL drives the gate of an external AGC amplifier that controls the RF level to the power amplifier. A portion of the output is fed back, via a directional coupler, for closed-loop operation. The amplifier in
FIG. 1
is not a switch-mode amplifier. Rather, the amplifier is at best a Class AB amplifier driven into saturation, and hence demonstrates relatively poor efficiency.
FIG. 2
shows an example of a known Class E power amplifier, described in U.S. Pat. No. 3,919,656. An RF input signal is coupled over a lead
1
to a driver stage
2
, the latter controlling the active device
5
via a signal coupled over a lead
3
. The active device
5
acts substantially as a switch when appropriately driven by the driver
2
. The output port of the active device is therefore represented as a single-pole single-throw switch
6
. Connected across the switch
6
is the series combination of a DC power supply
7
and the input port of a load network
9
. The output port of the load network
9
is connected to the load
11
. As the switch
6
is cyclically operated at the desired AC output frequency, DC energy from the power supply
7
is converted into AC energy at the switching frequency (and harmonics thereof).
U.S. Pat. No. 3,900,823 to Sokal et al. describes feedback control of Class E power amplifiers. The need for feedback control suggests the inability to fully characterize device behavior, which in turn suggests substantial departure from operation of the device as a true switch. Sokal further describes a solution to the problem of feedthrough power control at low power levels by controlling RF input drive magnitude through application of negative feedback techniques to control the DC power supply of one or more preceding stages. The need for feedback control imposes constraints of feedback loop dynamics on a system.
The Class E amplifier arrangement of
FIG. 2
, although it is theoretically capable of achieving high conversion efficiency, suffers from the disadvantage that large voltage swings occur at the output of the active device, due to ringing. This large voltage swing, which typically exceeds three times the supply voltage, precludes the use of the Class E circuit with certain active devices which have a low breakdown voltage.
To operate an RF power amplifier in switch mode, it is necessary to drive the output transistor(s) rapidly between cutoff and full-on, and then back to cutoff, i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High-efficiency modulating RF amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High-efficiency modulating RF amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-efficiency modulating RF amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361817

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.