High efficiency low current power supply and battery charge...

Electricity: battery or capacitor charging or discharging – Battery or cell charging – With thermal condition detection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S546000

Reexamination Certificate

active

06297620

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to combination power supplies and battery chargers, and more particularly to power supplies for telecommunications hubs located on business or customer premises which provide power to operate the hub while maintaining backup batteries at float charge level compensated for ambient temperature changes.
BACKGROUND OF THE INVENTION
Traditionally, telephony communications within the United States were handled by the public switched telecommunications network (PSTN). The PSTN can be characterized as a network designed for voice communications, primarily on a circuit-switched basis, with full interconnection among individual networks. The PSTN network is largely analog at the local loop level, digital at the backbone level, and generally provisioned on a wireline, rather than a wireless, basis. The PSTN includes switches that route communications between end users. Circuit switches are the devices that establish connectivity between circuits through an internal switching matrix. Circuit switches set connections between circuits through the establishment of a talk path or transmission path. The connection and the associated bandwidth are provided temporarily, continuously, and exclusively for the duration of the session, or call. While developed to support voice communications, circuit switches can support any form of information transfer (e.g., data and video communications).
In a traditional PSTN environment, circuit switches include central office (CO) exchanges, tandem exchanges, access tandem exchanges, and international gateway facilities. Central offices, also known as exchanges, provide local access services to end users via local loop connections within a relatively small area of geography known as an exchange area. In other words, the CO provides the ability for a subscriber within that neighborhood to connect to another subscriber within that neighborhood. Central offices, also known as end offices, reside at the terminal ends of the network. In other words, COs are the first point of entry into the PSTN and the last point of exit. They are also known as class
5
offices, the lowest class in the switching hierarchy. A class
5
telephone switch communicates with an analog telephone using the analog telephony signals in the well-known analog format. The class
5
telephone switch provides power to the telephone; detects off-hook status of the telephone and provides a dial tone in response; detects dual-tone multi-frequency signals from the caller and initiates a call in the network; plays a ringback tone to the caller when the far-end telephone is ringing; plays a busy tone to the caller when the far-end telephone is busy; provides ring current to the telephone on incoming calls; and provides traditional telephone services such as call waiting, call forwarding, caller ID, etc.
In an effort to increase the amount and speed of information transmitted across networks, the telecommunications industry is shifting toward broadband packet networks which are designed to carry a variety of services such as voice, data, and video. For example, asynchronous transfer mode (ATM) networks have been developed to provide broadband transport and switching capability between local area networks (LANS) and wide area networks (WANs). The Sprint ION network is a broadband network that is capable of delivering a variety of services such as voice, data, and video to an end user at a residential or business location. The Sprint ION network has a wide area IP/ATM or ATM backbone that is connected to a plurality of local loops via multiplexors. Each local loop carriers ATM over ADSL (asymmetric digital subscriber line) traffic to a plurality of integrated service hubs (ISHs), which may be at either residential or business locations.
An ISH is a hardware component that links business or residential user devices such as telephones and computers to the broadband, wide area network through a plurality of user interfaces and at least one network interface. A suitable ISH is described in co-pending U.S. patent application Ser. No. 09/226,575 entitled “Multi-Services Communications Device,” filed on Jan. 7, 1999 (Sprint docket number 1246), which is incorporated by reference herein in its entirety. The network interface typically is a broadband network interface such as ADSL, T1, or HDSL-2. Examples of user interfaces include telephone interfaces such as plain old telephone system (POTS) ports for connecting telephones, fax machines, modems, and the like to the ISH; computer interfaces such as ethernet ports for connecting computers and local area networks to the ISH; and video ports such as RCA jacks for connecting video players, recorders, monitors, and the like to the ISH.
In providing telephony services over a broadband network, the ISH connects a telephone in the customer's premises to a network element such as a service manager. This connection between the telephone and the network element is typically an ATM connection, which is much different than the traditional analog line to the local switch. ATM connections usually do not support analog telephony signals, such as off-hook, dial tone, and busy signals. Therefore, the ISH must provide many of the telephony functions traditionally provided by the telephone provider central office such as detect off-hook conditions, on-hook connections, and digits as well as provide the telephones with dial tone, ring current, ringback, and busy signals. The terms off-hook and off-hook condition as used herein are generic terms meaning that a user device (whether telephone, facsimile machine, modem, etc.) connected to a telephone line is attempting to access and use the line.
Another example of such a central office function being provided by the ISH is backup power. Traditionally in cases of power grid failure, the central office provides backup power to customers' telephones through use of an industrial-strength, petroleum-fueled backup generator. Since it is not economical to equip each customer with a backup generator, an ISH must be equipped with a back-up power supply, which is typically a battery pack, to maintain power to the system in cases of power grid failure.
The ISH must include a power supply to support the telephony functions (off hook, dial tone, etc.) and to keep the battery pack in charged condition so that it can provide backup power for as long as possible in the event of power grid failure. The power supply of the ISH should be as simple as possible to be cost effective; and yet it is desirable that the power supply be able to operate continuously, use as little power as possible when the power grid fails, and provide high voltage isolation of the user equipment from the power grid.
SUMMARY OF THE INVENTION
A power supply according to the present invention includes an AC to DC power converter for converting AC power from the power grid to DC power for use in the ISH and a sealed lead acid battery connected directly to the DC output of the power converter. The power converter includes a first rectifier section for converting AC power from the power grid into an essentially unregulated first DC voltage. An isolation transformer has a primary coil connected to the first DC voltage and to a pulse width modulated voltage controller. The secondary of the isolation transformer is connected to a second rectifier section for producing a regulated second DC voltage at an output which is connected to the battery. A voltage comparator has an input connected to the second DC voltage by a divider circuit which includes a temperature sensitive device which adjusts the feedback voltage in proportion to battery temperature. The output of the voltage comparator drives the voltage control input of the voltage controller to maintain the regulated DC output voltage at the level needed to maintain the battery at float voltage over the operating temperature range. A current limit input to the voltage controller is provided with an input which is a combination of the primary winding current level and the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High efficiency low current power supply and battery charge... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High efficiency low current power supply and battery charge..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High efficiency low current power supply and battery charge... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2614850

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.