Drug – bio-affecting and body treating compositions – Radionuclide or intended radionuclide containing; adjuvant... – In an organic compound
Reexamination Certificate
2001-12-11
2004-07-27
Jones, Dameron L. (Department: 1616)
Drug, bio-affecting and body treating compositions
Radionuclide or intended radionuclide containing; adjuvant...
In an organic compound
C424S001110, C534S015000
Reexamination Certificate
active
06767531
ABSTRACT:
BACKGROUND OF THE INVENTION
The use of agents which cause partial or total suppression or eradication of bone marrow has become an accepted part of certain procedures used to treat patients with cancers such as leukemias, lymphomas, myelomas and Hodgkin's disease as well as in the treatment of patients suffering from hematopoietic disorders such as sickle cell anemia and thalassemia. In situations where the patient is suffering from a hematopoietic disorder such as thalassemia or sickle cell anemia, bone marrow transplantation may offer the possibility of a cure. If the abnormal bone marrow of an individual suffering from sickle cell anemia or thalassemia can be eradicated and then replaced with a bone marrow that takes and is reproduced and capable of producing normal red cells with normal hemoglobin, the individual may be cured.
Multiple myeloma is a disease of abnormal plasma cell proliferation that can result in anemia, pathologic fractures, renal failure, and death. Complete eradication of the abnormal plasma cells and precursor abnormal cells that may differentiate into abnormal plasma cells can prevent the progression, reverse or even cure the disease.
Current therapy is high dose chemotherapy (melphalan or combinations such as thiotepa/busulfan/cyclophosphamide) with or without total body irradiation (TBI). Treatment with melphalan 140 mg/m
2
of body-surface area given intravenously can induce complete remissions in about 20-30% of patients. However, it causes severe and sometimes irreversible myelosuppression. For example, see B. Barlogie et al.,
Blood,
72, 2015 (1989); (1998); D. Cunningham et al.,
J. Clin. Oncol.,
12, 764 (1994); R. Bataille et al.,
New Engl. J. Med.,
336, 1657 (1997).
Furthermore, when radiation is combined with other cytotoxic therapies, such as chemotherapy, the toxicity can be additive or synergistic. In addition, patients who undergo bone marrow suppression or ablation, sufficient to require either growth factor support, transfusion support or stem cell reinfusion, may encounter toxicities from the chemotherapy, from TBI, or both.
The dose of chemotherapy and radiotherapy that can be administered to an individual patient is often limited by patient age or overall health. Some patients who could benefit from high dose chemotherapy and radiotherapy do not receive it because they are considered to old or have other concomitant diseases which make them unsuitable candidates because of the non-target organ toxicity currently associated with these therapies. Higher doses of radiation may increase the percentage of tumor cells that are killed, and, with ionizing radiation, there comes a point where small increments in radiation can have a major impact on the percentage of cells killed.
The use of complexed radionuclides for bone marrow suppression is discussed in U.S. Pat. No. 4,853,209, where the use of Samarium-153 (
153
Sm), Gadolinium-159 (
159
Gd), or Holmium-166 (
166
Ho) complexed with a ligand selected from ethylenediaminetetramethylenephosphonic acid (EDTMP), diethylenetriaminepentamethylenephosphonic acid (DTPMP), hydroxyethyl-ethylenediaminetrimethylenephosphonic acid (HEEDTMP), nitrilotrimethylene-phosphonic acid (NTMP), or tris(2-aminoethyl)aminehexamethylenephosphonic acid (TTHMP) is disclosed. Phosphonic acid-containing chelators are selected due to their ability to target the radionuclide to the bone.
U.S. Pat. Nos. 4,882,142, and 5,059,412 are directed to a method for the suppression of bone marrow and to a composition for use in the method. The method comprises administering to a mammal in need of such treatment a bone marrow suppressing amount of at least one composition comprised of a radionuclide
153
Sm,
159
Gd, or
166
Ho complexed with 1,4,7,10-tetraazacyclododecanemethylenephosphonic acid as the macrocyclic chelating moiety. The method of bone marrow suppression described therein may be used in combination with chemotherapeutic drugs and/or external radiation. The compositions comprise the radionuclides in dosages comprising from about 18 to 1850 megabecquerels per kilogram of body weight of the target mammal. The amount of radioactivity delivered to the bone is necessarily lower, and was not determined.
Therefore, a continuing need exists for methodologies and agents useful for selective bone marrow suppression and/or for adequate tumor cell killing, that is, wherein the bone marrow is suppressed and/or tumor cells killed with only minimal damage to non-target soft tissues, for example, liver, urinary bladder, and kidney. There is also a need for a means of delivering high radiation doses to sites of disease in or near bone, with standard or high dose chemotherapy without increasing toxicity to non-target organs. For those situations where bone marrow support can aid in therapy or cure, it would be desirable to have a means of first selectively suppressing the abnormal or diseased bone marrow independent of, or with limited, total body irradiation.
SUMMARY OF THE INVENTION
The present invention provides a method for selectively, rapidly, and effectively suppressing bone marrow or to treat a pathology associated with (in or near) the bone or bone marrow. In one aspect, the method comprises administering to a mammal in need of such treatment a high dosage of a complex of a bone marrow suppressing radionuclide with a bone targeting ligand, such as an aminophosphonic acid. Such pathologies include cancer, autoimmune diseases, certain infections and certain hematopoietic genetic disorders.
Preferably, the radionuclide is
166
Ho and the ligand is a macrocyclic aminophosphonic acid such as DOTMP. The complex is preferably administered in a single treatment dose effective to deliver at least 20 Gy to the bone marrow of the subject. The present invention also provides aqueous compositions comprising
166
Ho-DOTMP and a radioprotectant that are stable for at least about 72 hours under ambient conditions.
A preferred embodiment of the invention provides a method to increase the efficacy of chemotherapy, particularly high dose or intensive chemotherapy, without a substantial increase in total side effects, and more preferably, without the need for TBI. This method comprises administering an effective bone marrow suppressing amount of a radionuclide-amino phosphonate complex to a subject in need of such treatment in conjunction with one or more chemotherapeutic agents, while maintaining an acceptable level of tolerance of the subject to the total therapeutic regimen. For example, it has been unexpectedly found that a high dosage of radiation can be delivered to the bone marrow of a subject afflicted with a bone-associated neoplasm (cancer) or non-cancerous myeloproliferative disorder in conjunction with high dose chemotherapy, such as melphalan in the case of myeloma, while not substantially increasing the side effects as compared to the side effects associated with the high dose chemotherapy alone.
For example, the use of at least about 200 mg/m
2
melphalan to treat multiple myeloma can be combined with a dosage of a
166
Ho aminophosphonate complex effective to deliver about 20-60 Gy, preferably about 30-50 Gy, to the bone marrow of the afflicted subject without substantially increasing the side effects over those associated with melphalan therapy alone at about 140 mg/m
2
or about 200 mg/m
2
. Such treatment has the advantage of providing efficacy comparable to that obtained from treatment with a combination of melphalan and TBI, without the side effects associated with TBI.
The efficacy of conventional melphalan therapy (i.e., 70-120 mg/m
2
can also be enhanced by administration of the present complexes, thus improving the outcome for older patients. Therefore, the efficacy of current treatment regimens to treat multiple myeloma, e.g., 140 mg/m
2
melphalan plus TBI or 200 mg/m
2
melphalan alone, can be substantially enhanced without substantial increase in side effects, e.g., those due to melphalan and/or TBI used without the complex.
The preferred radionuclide compositions employed in the method of the present inv
Abrams Paul G.
Bryan James Kyle
Fritzberg Alan R.
Hylarides Mark D.
John Elizabeth K.
Jones Dameron L.
NeoRx Corporation
Schwegman, Lendberg, Woessner & Kluth, P.A.
LandOfFree
High dose radionuclide complexes for bone marrow suppression does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High dose radionuclide complexes for bone marrow suppression, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High dose radionuclide complexes for bone marrow suppression will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3257407