High dimensional acoustic modeling via mixtures of compound...

Data processing: speech signal processing – linguistics – language – Speech signal processing – Recognition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C704S239000, C704S240000, C704S255000

Reexamination Certificate

active

06539351

ABSTRACT:

BACKGROUND
1. Technical Field
The present invention generally relates to high dimensional data and, in particular, to methods for mining and visualizing high dimensional data through Gaussianization.
2. Background Description
Density Estimation in high dimensions is very challenging due to the so-called “curse of dimensionality”. That is, in high dimensions, data samples are often sparsely distributed. Thus, density estimation requires very large neighborhoods to achieve sufficient counts. However, such large neighborhoods could cause neighborhood-based techniques, such as kernel methods and nearest neighbor methods, to be highly biased.
The exploratory projection pursuit density estimation algorithm (hereinafter also referred to as the “exploratory projection pursuit”) attempts to overcome the curse of dimensionality by constructing high dimensional densities via a sequence of univariate density estimates. At each iteration, one finds the most non-Gaussian projection of the current data, and transforms that direction to univariate Gaussian. The exploratory projection pursuit is described by J. H. Friedman, in “Exploratory Projection Pursuit”, J. American Statistical Association, Vol. 82, No. 397, pp. 249-66, 1987.
Recently, independent component analysis has attracted a considerable amount of attention. Independent component analysis attempts to recover the unobserved independent sources from linearly mixed observations. This seemingly difficult problem can be solved by an information maximization approach that utilizes only the independence assumption on the sources. Independent component analysis can be applied for source recovery in digital communication and in the “cocktail party” problem. A review of the current status of independent component analysis is described by Bell et al., in “A Unifying Information-Theoretic Framework for Independent Component Analysis”, International Journal on Mathematics and Computer Modeling, 1999. Independent component analysis has been posed as a parametric probabilistic model, and a maximum likelihood EM algorithm has been derived, by H. Attias, in “Independent Factor Analysis”, Neural Computation, Vol. 11, pp. 803-51, May 1999.
Parametric density models, in particular Gaussian mixture density models, are the most widely applied models in large scale high dimensional density estimation because they offer decent performance with a relatively small number of parameters. In fact, to limit the number of parameters in large tasks such as automatic speech recognition, one assumes only mixtures of Gaussians with diagonal covariances. There are standard EM algorithms to estimate the mixture coefficients and the Gaussian means and covariance. However, in real applications, these parametric assumptions are often violated, and the resulting parametric density estimates can be highly biased. For example, mixtures of diagonal Gaussians
p

(
χ
)
=

i
=
1
1



π
i

G

(
χ
,
μ
i
,
Σ
i
)
roughly assume that the data is clustered, and within each cluster the dimensions are independent and Gaussian distributed. However, in practice, the dimensions are often correlated within each cluster. This leads to the need for modeling the covariance of each mixture component. The following “semi-tied” covariance has been proposed:
&Sgr;
i
=A&Lgr;
i
A
T
where A is shared and for each component, &Lgr;
i
is diagonal. This semi-tied co-variance is described by: M. J. F. Gales, in “Semi-tied Covariance Matrices for Hidden Markov Models”, IEEE Transactions Speech and Audio Processing, Vol. 7, pp. 272-81, May 1999; and R. A. Gopinath, in “Constrained Maximum Likelihood Modeling with Gaussian Distributions”, Proc. of DARPA Speech Recognition Workshop, February 8-11, Lansdowne, Va., 1998. Semi-tied covariance has been reported in the immediately preceding two articles to significantly improve the performance of large vocabulary continuous speech recognition systems. It should be appreciated that a compound Gaussian is no longer a diagonal Gaussian.
Accordingly, there is a need for a method that transforms high dimensional data into a standard Gaussian distribution which is computationally efficient.
SUMMARY OF THE INVENTION
The present invention is directed to high dimensional acoustic modeling via mixtures of compound Gaussians with linear transforms. In addition to providing a novel density model within an acoustic model, the present invention also provides an iterative expectation maximization (EM) method which estimates the parameters of the mixtures of the density model as well as of the linear transform.
According to a first aspect of the invention, a method is provided for generating a high dimensional density model within an acoustic model for one of a speech and a speaker recognition system. The density model has a plurality of components, each component having a plurality of coordinates corresponding to a feature space. The method includes the step of transforming acoustic data obtained from at least one speaker into high dimensional feature vectors. The density model is formed to model the feature vectors by a mixture of compound Gaussians with a linear transform. Each compound Gaussian is associated with a compound Gaussian prior and models each of the coordinates of each of the components of the density model independently by a univariate Gaussian mixture including a univariate Gaussian prior, variance, and mean.
According to a second aspect of the invention, the method further includes the step of applying an iterative expectation maximization (EM) method to the feature vectors, to estimate the linear transform, the compound Gaussian priors, and the univariate Gaussian priors, variances, and means.
According to a third aspect of the invention, the EM method includes the step of computing an auxiliary function Q of the EM method. The compound Gaussian priors and the univariate Gaussian priors are respectively updated, to maximize the auxiliary function Q. The univariate Gaussian variances, the linear transform, and the univariate Gaussian means are respectively updated to maximize the auxiliary function Q, the linear transform being updated row by row. The second updating step is repeated, until the auxiliary function Q converges to a local maximum. The computing step and the second updating step are repeated, until a log likelihood of the feature vectors converges to a local maximum.
According to a fourth aspect of the invention, the method further includes the step of updating the density model to model the feature vectors by the mixture of compound Gaussians with the updated linear transform. Each of the compound Gaussians is associated with one of the updated compound Gaussian priors and models each of the coordinates of each of the components independently by the univariate Gaussian mixtures including the updated univariate Gaussian priors, variances, and means.
According to a fifth aspect of the invention, the linear transform is fixed, when the univariate Gaussian variances are updated.
According to a sixth aspect of the invention, the univariate Gaussian variances are fixed, when the linear transform is updated.
According to a seventh aspect of the invention, the linear transform is fixed, when the univariate Gaussian means are updated.


REFERENCES:
patent: 5727124 (1998-03-01), Lee et al.
patent: 5864810 (1999-01-01), Digalakis et al.
patent: 6151574 (2000-11-01), Lee et al.
patent: 6269334 (2001-07-01), Basu et al.
patent: 6336108 (2002-01-01), Thiesson et al.
H. Attias, “Independent Factor Analysis”, Neural Computation, vol. 11, No. 4, pp. 803-851, May 1999.
Bell et al., “An Information-Maximization Approach to Blind Separation and Blind Deconvolution”, Neural Computation, vol. 7, No. 6, pp. 1004-1034, Nov. 1995.
J.F. Cardoso, “Multidimensional Independent Component Analysis”, Proceedings of ICASSP 98, vol. 4, pp. 1941-1944, Seattle, May 1998.
I. Cziszar, “I-Divergence Geometry Of Probability Distributions and Minimization Problems”, Annals of Probability, vol. 3, No. 1, pp. 146-158, Feb. 197

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High dimensional acoustic modeling via mixtures of compound... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High dimensional acoustic modeling via mixtures of compound..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High dimensional acoustic modeling via mixtures of compound... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3039265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.