Electric heating – Metal heating – By arc
Reexamination Certificate
2001-02-09
2003-07-01
Elve, M. Alexandra (Department: 1725)
Electric heating
Metal heating
By arc
C219S121690, C219S121720
Reexamination Certificate
active
06586702
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is generally concerned with high density pixel array systems, such as imagers, sensors, actuators, detectors and the like, and methods of fabricating such arrays, and is particularly concerned with a method of fabricating a high performance pixel array in exotic materials such as ferroelectric, piezoelectric, pyroelectric, acousto-optic materials and the like for integration in such a system.
In imaging systems for medical and other diagnostic sciences, an ongoing goal is the development of a low-cost, high quality, high resolution, real-time digital imaging system for an opaque target, such as the human body. Imaging systems are also used in non-medical applications such as nondestructive testing of materials and compounds. Such systems have the capability of providing on-line, non-invasive imaging. Currently, both X-ray and ultrasonic imaging techniques are used for displaying the internal characteristics of an opaque item, such as parts of human or animal bodies. Both techniques are subject to same disadvantages. In X-ray imaging, digitizing of an X-ray image directly is a challenge because silicon used in the pixels of focal plane digitizing arrays or detectors, such as charge coupled devices (CCDs), is damaged by X-rays. It is known to place a fluorescent or phosphorescent medium between the X-ray source and a visible detector matrix to convert the X-rays to visible light. There are still problems in using a screen of such material in front of the visible matrix detector. For example, if the screen is too thin, not enough of the X-rays will be absorbed and some will reach and damage the visible detector. If the screen is too thick, visible light is scattered, enlarging the area of the detector which is illuminated and reducing the digitized image resolution. In some cases, scattered light may escape without reaching the visible detector at all. The fluorescent or phosphorescent material may also have non-uniform properties, degrading image quality and resolution. Some phosphorescent materials exhibit “after-glow”, in other words they may continue to emit light even after the radiation source is no longer present. This may further degrade the image quality.
U.S. Pat. No. 5,519,227 of Karellas describes a structured scintillation screen which overcomes some of these problems. Regions of a transparent or semi-transparent scintillating substance are ablated to form an array of individual pixels. Each pixel is surrounded with an optically inactive material having a lower refractive index, so that the pixel is made to function as an optical waveguide. This confines the x-ray induced phosphorescence to the individual pixels and channels it to the corresponding visible detector elements. This increases resolution and detection efficiency. The method of fabrication is as follows: The substrate of phosphorescent or optically active material is exposed to electromagnetic radiation, such as a laser beam, so as to ablate the substrate in exposed regions to produce a one or two dimensional array of pixels. A mask may be placed in contact with the substrate so that the desired regions are ablated by the laser beam. Following laser processing to form the pixels, the pixels are surrounded by an optically inactive interstitial material so as to avoid optical leakage from each pixel. The pixel structure is attached via a substrate to a visible detector such as a CCD camera.
Other X-ray focal plane array (XFPA) medical matrix imagers have also been proposed, and have been introduced commercially in recent years, particularly for dental examinations. However, these imagers have, up to now, been very expensive and demonstrate marginal performance, due to the significant challenges in developing of a high performance, two dimensional XFPA detection matrix. One of the problems is that in order to replace high-resolution film radiography, the pixelated detector must have high uniformity and almost zero defects, with a resolution approaching 20 lp/mm, for good performance. All current commercial XFPA systems have demonstrated inferior imaging quality as compared with state-of-the-art commercial X-ray films, due to lack of sufficient resolution and low signal
oise.
A different imaging technique is ultrasound imaging, which has many applications. Such non-invasive ultrasonic imaging has advanced tremendously since its inception around 1950 and is currently one of the effective techniques for medical diagnostics of the internal human abdominal organs, the heart and great vessels. The transducer is the heart of all the medical ultrasound imagers. It performs the conversion of the electric signal into acoustic energy (transceiver) and, vice versa, translates back the received mechanical energy into an electric signal (receiver), to detect the information carried in the receiving signal. Consequently, there are fundamental relationships between the architecture and functional operation of the transducer and the quality of the resulting sonographic image.
Early transducers were based on a single element which was manually scanned. In the seventies, the linear phase-array transducers were introduced which were able to electronically focus and electronically steer the ultrasound beam in the plane of the linear array, by the application of suitable phase delays to each element. Current state-of-the-art clinical ultrasound imagers typically use linear phase-arrays (N×1) with more than N=100 elements, to electronically steer and focus the ultrasound beam. These ultrasound imagers are normally scanned in the B mode, which allows viewing of a cross-section slice. However, these arrays can only steer and focus in their elevation direction. Thus, in most cases, the lateral resolution in the azimuth direction can be completely different than in the elevation direction. This asymmetry of the ultrasound beam shape can make the detection of small cysts and lesions in the abdomen, fetus, or myocardium very difficult. In order to reduce the slice thickness and improve the elevation resolution, 1.5D phase-arrays, with (N×3) or (N×5) matrixes were recently implemented in certain ultrasound imaging systems. Currently, most advanced ultrasound imagers used for gynecology, obstetrics, encephalogy, opthamology and cardiology, are based on 1D, or 1.5D, electronic scanned B-mode phase-array transducers, which consist of one or a few rows of piezoelectric transducer elements, respectively. Full volume scanning is usually provided by mechanical scanning of the phase-array transducers either manually, or by a mechanical manipulator.
The most popular ultrasound body imaging is provided by the impulse-echo modality, in which the piezoelectric transducers act as both acoustic sources and detectors of the ultrasound radiation. The principle of the impulse-echo method is based on the ultrasonic transducer transmitting the sound impulse into the body (transceiver). The returning signal from the internal organ is detected by the transducer (receiver), which also determines the time lapse between the transmitted and received pulse, for the determination of the distance of the reflecting (scattering) organ. The further the organ from the origin, the longer is the time measured. Practically, in the impulse-echo method, the echo signals measure the changes in the reflected and scattered ultrasonic radiation, due to the acoustic-impedance differences at the borders between the various biological materials of the different tissues, to generate a mapping image, point by point. Consequently, the impulse-echo methodology is mostly utilized for non-invasive clinical imagery of soft internal tissues, which allows better penetration of these acoustic waves and their back return.
In the last 20 years, the image quality of medical ultrasound imaging has advanced sufficiently to make it an important, and sometimes indispensable, diagnostics modality in obstetrics and in the management of a large number of diseases. Nevertheless, current ultrasound imaging still suffers from a
McFall James Earl
Wiener-Avnear Eliezer
Brown Martin Haller & McClain LLP
Elve M. Alexandra
Laser Electro Optic Application Technology Company
LandOfFree
High density pixel array and laser micro-milling method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High density pixel array and laser micro-milling method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High density pixel array and laser micro-milling method for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3026378