Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – Distinct contact secured to panel circuit
Reexamination Certificate
1999-07-07
2001-12-04
Paumen, Gary (Department: 2833)
Electrical connectors
Preformed panel circuit arrangement, e.g., pcb, icm, dip,...
Distinct contact secured to panel circuit
Reexamination Certificate
active
06325644
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical connectors and more particularly high I/O density connectors, such as array connectors.
2. Brief Description of Prior Developments
The drive to reduce the size of electronic equipment, particularly personal portable devices, and to add additional functions to such equipment, has resulted in an ongoing drive for miniaturization of all components, especially electrical connectors. Efforts to miniaturize connectors have included reducing the pitch between terminals in single or double row linear connectors, so that a relatively high number of I/O or other lines can be interconnected by connectors that fit within tightly circumscribed areas on the circuit substrates allotted for receiving connectors. The drive for miniaturization has also been accompanied by a shift in preference to surface mount techniques (SMT) for mounting components on circuit boards. The confluence of the increasing use of SMT and the required fine pitch of linear connectors has resulted in approaching the limits of SMT for high volume, low cost operations. Reducing the pitch of the terminals increases the risk of bridging adjacent solder pads or terminals during reflow of the solder paste. To satisfy the need for increased I/O density, array connectors have been proposed. Such connectors have a two dimensional array of terminals mounted on an insulative substrate and can provide improved density. However, these connectors present certain difficulties with respect to attachment to the circuit substrates by SMT techniques because the surface mount tails of most, if not all, of the terminals must be beneath the connector body. As a result, the mounting techniques used must be highly reliable because it is difficult to visually inspect the solder connections or repair them, if faulty. In the mounting of an integrated circuit (IC) on a plastic or ceramic substrate the use of ball grid array (BGA) and other similar packages has become common. In a BGA package, spherical solder balls attached to the IC package are positioned on electrical contact pads of a circuit substrate to which a layer of solder paste has been applied, typically by use of a screen or mask. The unit is then heated to a temperature at which the solder paste and at least a portion or all of the solder ball melt and fuse to an underlying conductive pad formed on the circuit substrate. The IC is thereby connected to the substrate without need of external leads on the IC.
While the use of BGA and similar systems in connecting an IC to a substrate has many advantages, a corresponding means for mounting an electrical connector or similar component on a printed wiring board (PWB) or other substrate has yet to be developed. It is important for most situations that the substrate-engaging surfaces of the solder balls are coplanar to form a substantially flat mounting interface, so that in the final application the balls will reflow and solder evenly to a planar printed circuit board substrate. Any significant differences in solder coplanarity on a given substrate can cause poor soldering performance when the connector is reflowed onto a printed circuit board. To achieve high soldering reliability, users specify very tight coplanarity requirements, usually on the order of 0.004 inches. Coplanarity of the solder balls is influenced by the size of the solder ball and its positioning on the connector. The final size of the ball is dependent on the total volume of solder initially available in both the solder paste and the solder balls. In applying solder balls to a connector contact, this consideration presents particular challenges because variations in the volume of the connector contact received within the solder mass affect the potential variability of the size of the solder mass and therefore the coplanarity of the solder balls on the connector along the mounting interface.
Another problem presented in soldering connectors to a substrate is that connectors often have insulative housings which have relatively complex shapes, for example, ones having numerous cavities. Residual stresses in such thermoplastic housings can result from the molding process, from the build up of stress as a result of contact insertion or a combination of both. These housings may become warped or twisted either initially or upon heating to temperatures necessary in SMT processes, such as temperatures necessary to reflow the solder balls. Such warping or twisting of the housing can cause a dimensional mismatch between the connector assembly and the PWB, resulting in unreliable soldering because the surface mounting elements, such as solder balls, are not sufficiently in contact with the solder paste or close to the PWB prior to soldering.
A need, therefore, exists for reliably and efficiently mounting high density electrical connectors on substrates by surface mounting techniques.
SUMMARY OF THE INVENTION
Electrical connectors according to the present invention provide high I/O density and reliable attachment to circuit substrates by SMT techniques. These connectors exhibit high coplanarity along the mounting interface.
Electrical connectors of the present invention are ones in which one or more terminals are connectable by a fusible electrically conductive material to a substrate. This fusible electrically conductive material is a solder mass, preferably comprising a solder ball that can be reflowed to provide the primary electrical current path between the terminal and a circuit substrate.
An aspect of the invention includes methods for forming an exterior fusible conductive contact on an element of an electrical connector. According to one method, a recess is formed on the exterior side of the connector elements or contacts. A section of a conductive contact extends from adjacent the interior side of the conductor element into the recess on the exterior side of the housing. The recess is filled with a controlled volume of solder paste. A fusible conductive element, for example a solder ball, is positioned in the recess on the exterior side of the housing. The conductive element placed in the recess is then heated to a temperature sufficient to fuse the solder paste and fuse the fusible conductive element to the section of the contact extending into said recess.
Also encompassed by this invention is a contact for use in an electrical connector which comprises a terminal tab area where said contact is connectable to a fusible conductive element, such as a solder ball. A medial area of the contact is positioned between the terminal tab and a contact area. The medial area is adapted to resist molten solder flow, for example, by application of a coating or plating of a non-solder wettable material. By this arrangement wicking of the solder from the solder ball from the area of attachment to the contact avoided.
Coplanarity of the surface mounting interface of the connector is maintained by providing an insulative connector housing in which stress buildup is avoided. According to this aspect of the invention, a contact terminal is inserted into an opening in the housing. The cross section of the opening is configured so that at least one side thereof has or comprises a shaped projection adapted to be deformed by the terminals as the terminal is inserted into the opening. By means of this arrangement, stress build up as a result of multiple contact insertions is avoided, so as to minimize warping and twisting of the housing.
REFERENCES:
patent: 2980881 (1961-04-01), McKee
patent: 3320658 (1967-05-01), Bolda et al.
patent: 3719981 (1973-03-01), Steltz
patent: 3838382 (1974-09-01), Sugar
patent: 3864004 (1975-02-01), Friend
patent: 3865462 (1975-02-01), Cobaugh et al.
patent: 3889364 (1975-06-01), Krueger
patent: 4056302 (1977-11-01), Braun et al.
patent: 4097266 (1978-06-01), Takahaski et al.
patent: 4140361 (1979-02-01), Sochor
patent: 4274700 (1981-06-01), Keglewitsch et al.
patent: 4380518 (1983-04-01), Wydro
patent: 4395086 (1983-07-01), Marsh
patent: 4396140 (1983-08-01), Jaffe et
Houtz Timothy W.
Lemke Timothy A.
Berg Technology Inc.
Page M. Richard
Paumen Gary
Reiss Steven M.
LandOfFree
High density connector and method of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High density connector and method of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High density connector and method of manufacture will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2602222