High data rate write process for non-volatile flash memories

Static information storage and retrieval – Floating gate – Particular biasing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S185110, C365S185280

Reexamination Certificate

active

06314025

ABSTRACT:

BACKGROUND
1. Field of the Invention
This invention relates to write processes for non-volatile memories and particularly to methods of reducing the current required when writing at a high data rate.
2. Description of Related Art
Semiconductor non-volatile memories such as EPROM, EEPROM, and flash memories, which permit electrical erasing and programming of memory cells, are well known. Such memories conventionally include arrays of memory cells where each memory cell includes a floating gate transistor. Write and erase circuits coupled to an array write to or erase a memory cell in the array by electrically charging or discharging the floating gate of the floating transistor in the memory cell to change the threshold voltage of the transistor. In particular, to write to a selected memory cell, the write circuit charges the floating gate of the floating gate transistor in the selected memory cell until the threshold voltage of the transistor is at a level that represents the value being written.
One write method for a non-volatile memory cell uses channel hot electron injection. A typical channel hot electron injection process applies a high voltage (about 12 volts) to the control gate of a floating gate transistor, applies a high voltage (about 5 volts) to the drain of the floating gate transistor, and grounds the source of the floating gate transistor. The high drain-to-source voltage causes a relatively large current through the floating gate transistor. The high control gate voltage attracts energetic (or hot) electrons that can pass from the channel through an insulating layer to the floating gate of the floating gate transistor. As electrons accumulate in the floating gate, the threshold voltage of the floating gate transistor increases, the drain-to-source current falls, and the rate of increase in the threshold voltage drops.
Conventional integrated circuit non-volatile memory currently uses a supply voltage between about 3 volts and about 5 volts. Accordingly, a non-volatile memory using channel hot electron injection for programming typically requires charge pumps to generate the high control gate voltage and the high drain voltage. The sizes of such charge pumps determine the number of memory cells that can be programmed in parallel. In particular, to program N cells in parallel a charge pump must be able to supply N times the current drawn by a single memory cell. At the start of a programming operation, the drain-to-source current through a memory cell being programmed is highest and places the greatest load on the charge pump supplying the drain voltage. Specifically, the charge pump supplies a maximum drain-to-source current Idsmax to each of N memory cells at the start of a parallel programming operation, and the charge pump must be able to supply a total current of N*Idsmax without an unacceptable drop in the drain voltage. If the required programming current could be reduced, a smaller charge pump could be employed which can reduce the overall memory circuit size and cost. Additionally, power consumption could be reduced, which is crucial for portable or battery operated applications.
Another concern in a non-volatile memory that stores an analog value or multiple bits of information in each memory cell is the precision of the write operation. Best precision and repeatability require nearly constant supply and programming voltages during programming. However, as noted above for programming operations, current drain is high at the beginning of the programming operation and falls as a memory cell threshold voltage rises. Accordingly, the charge pumps and the supply voltage in the memory are subject to changing current demands which cause voltage fluctuations or noise that can affect the accuracy and repeatability of write operations. Thus, methods of reducing current consumption, voltage fluctuations, and noise during programming are desired.
SUMMARY
In accordance with the invention, a non-volatile memory has multiple write pipelines that are sequentially started on programming operations and has a shared charge pump that supplies drain-to-source currents during the programming operations. With sequential starts, the programming operations are staggered, and the peak current for the multiple programming operations do not occur at the same time. Accordingly, sequential starting of programming operations in the write pipelines avoids the high combined peak current that occurs in memories that simultaneously start multiple programming operations. The staggered operations of the write pipelines also provide a high data rate because all of the write pipelines can operate at the same time to provide the same data rate as a conventional memory that performs parallel programming operations. The smaller peak current allows the charge pump and associated voltage regulation circuitry to be smaller than similar circuitry used in conventional memory that performs parallel programming operations. Additionally, since spikes in the current from the charge pump are relatively small, memories with sequential or staggered programming operations generate less noise in the supply voltage during programming, and permit accurate programming for applications such as analog or multiple-bits-per-cell storage.
One embodiment of the invention is a non-volatile semiconductor memory that includes multiple write pipelines, a shared charge pump, and a timing circuit. Each of the write pipelines includes an array of non-volatile memory cells and a write circuit coupled to the associated array. When started on a programming operation for a selected memory cell in the associated array, a write circuit applies a programming voltage to the selected memory cell to drive a current through the selected memory cell, for example, to cause channel hot electron injection which raises a threshold voltage in the selected memory cell. The charge pump generates the programming voltage from a supply voltage and supplies the programming voltage to all of the write pipelines for the programming operations. The timing circuit sequentially starts the programming operations by the write circuits. Accordingly, at most one write pipeline at a time requires the maximum programming current from the charge pump, and the charge pump and any associated voltage regulation circuitry can be smaller than that required in a memory that simultaneously starts multiple programming operations. The shared charge pump and sequential starting of programming operations can be beneficially employed in a binary memory, a multiple-bits-per-cell memory, and an analog memory.
Each write pipeline may additionally include selection circuitry that selects a voltage applied to the selected memory cell during programming. The selection circuitry selects the programming voltage for changing the threshold voltage of the selected memory cell during a series of programming cycles and selects a second voltage for testing the threshold voltage of the selected memory cell during a series of verify cycles. The programming operation in a pipeline ends when a verify cycle determines that the threshold voltage of the selected cell reaches its target level. The write pipelines can be divided into two banks, a bank of even numbered pipelines and a bank of odd numbered pipelines, such that when a programming operation in an even pipeline overlaps a programming operation in an odd pipeline, the even pipeline performs programming cycles and verify cycles when the odd pipeline respectively performs verify cycles and programming cycles. The interleaving programming and verify cycles in this fashion cuts the peak and average current requirement in half because at most one half of the write pipelines draw current from the charge pump at a time. Alternatively, the pipelines can be partitioned into three or more banks where each bank starts programming cycles at a different time.


REFERENCES:
patent: 4054864 (1977-10-01), Audaire et al.
patent: 4057788 (1977-11-01), Sage
patent: 4181980 (1980-01-01), McCoy
patent: 4200841 (1980-04-01), Nagata et al.
patent: 43181

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High data rate write process for non-volatile flash memories does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High data rate write process for non-volatile flash memories, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High data rate write process for non-volatile flash memories will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610127

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.