High carbon steel pipe excellent in cold formability and...

Metal treatment – Stock – Ferrous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S332000, C148S336000, C148S335000, C148S334000, C148S333000, C148S909000

Reexamination Certificate

active

06736910

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a high-carbon steel pipe and a method of producing the steel pipe. More particularly, the present invention relates to a seam welded steel pipe made of high carbon steel which is suitable for use as, e.g., a steering shaft and a drive shaft of automobiles, and a method of producing the steel pipe.
BACKGROUND ART
Recently, there has been a keen demand for a reduction in weight of an automobile body from the viewpoint of preservation of the global environment. The program for reducing the weight of an automobile body has hitherto been progressed by replacing steel bars, conventionally used to manufacture parts, with seam welded steel pipes. The use of seam welded steel pipes for parts which have conventionally been manufactured using steel bars, however, causes the following problem with the parts made of high carbon steel, such as a steering shaft and a drive shaft.
The parts made of high carbon steel have hitherto been manufactured from high carbon steel bars into predetermined shapes by cutting. When seam welded steel pipes are used in place of steel bars, the parts cannot often be machined into the predetermined shapes by cutting alone because the seam welded steel pipe has a thin wall thickness. Also, because of being made of high carbon steel, the seam welded steel pipe is poor in cold workability and has a difficulty in cold working, such as swaging and expansion, to obtain the predetermined shape. In view of those problems, a method of joining seam welded steel pipes having different diameters together by pressure welding is proposed, for example, in manufacture of drive shafts. However, that proposed method requires a high production cost in the process of pressure welding, and has another difficulty in ensuring reliability in the joined portion. For those reasons, an improvement in cold workability of seam welded steel pipes made of high carbon steel has keenly been demanded in the art.
A seam welded steel pipe made of high carbon steel is produced by the steps of shaping a steel strip into the form of a pipe by cold roll-forming and then joining adjacent ends of the pipe to each other by electrical resistance seam welding. During those pipe forming steps, not only work hardness is greatly increased, but also the hardness of a seamed portion is increased by the welding, thus resulting in a steel pipe with very poor cold workability. For that reason, it is usual before cold working to heat the produced steel pipe up to the austenitic range and then hold it to stand for cooling, that is, to perform normalizing at about 850° C. for about 10 minutes, so that the steel structure is transformed and recrystallized into a structure of ferrite and pearlite. However, a seam welded steel pipe made of high carbon steel and produced by the above conventional method has cold workability that cannot be regarded as sufficient, because it contains pearlite in too large amount. It is said that the range of C content to provide good cold workability has an upper limit of about 0.3%. In a seam welded steel pipe having the C content at such a level, however, sufficient fatigue strength cannot be obtained even if the steel pipe is subjected to heat treatment of hardening and tempering. The seam welded steel pipe is required to have a relatively high value of the C content for providing high fatigue strength.
As one method of producing a steel pipe having high fatigue strength, Japanese Unexamined Patent Application Publication No. 11-77116, for example, discloses a method of producing a steel pipe having high fatigue strength, in which reducing rolling is performed on a base steel pipe, containing C: more than 0.30% to 0.60%, at 400-750° C. with an accumulated reduction in diameter of not less than 20%. The invention disclosed in Japanese Unexamined Patent Application Publication No. 11-77116 is intended to perform warm reducing rolling on a base steel pipe to provide high strength with the tensile strength of not less than 600 MPa, thereby increasing the fatigue strength. According to the invention disclosed in Japanese Unexamined Patent Application Publication No. 11-77116, the fatigue strength is surely increased with an increase in tensile strength, but it is not always guaranteed that a high-carbon steel pipe being soft and having superior cold workability is obtained, because the disclosed invention takes an approach of the reducing rolling at relatively low temperatures for an increase in tensile strength.
Also, as a method of producing a steel pipe having high toughness and high ductility, Japanese Unexamined Patent Application Publication No. 10-306339 discloses a method of producing a steel material (steel pipe) having high toughness and high ductility, in which a base material (steel pipe) containing C: not more than 0.60% is subjected to rolling in the temperature range of ferrite recrystallization with a reduction in area of not less than 20%. The invention disclosed in Japanese Unexamined Patent Application Publication No. 10-306339 is intended to make the steel structure finer to produce a structure of fine ferrite, or a structure of fine ferrite+pearlite, or a structure of fine ferrite+cementite, thereby obtaining the steel material (steel pipe) having high toughness and high ductility. With the invention disclosed in Japanese Unexamined Patent Application Publication No. 10-306339, however, crystal grains are made finer to increase the strength and to obtain high toughness and high ductility. To that end, the disclosed invention takes an approach of the reducing rolling at relatively low temperatures for avoiding the crystal grains from becoming coarser. It is hence not always guaranteed that a high-carbon steel pipe being soft and being superior in cold workability and induction hardenability is obtained.
On the other hand, one conceivable method for improving cold workability of a seam welded steel pipe, which has a high value of the C content and provides high fatigue strength, is to anneal the seam welded steel pipe for spheroidizing cementite. However, spheroidization annealing generally requires heat treatment to be performed at about 700° C. for a long time of several hours, and therefore increases the production cost. Another problem is that, with spheroidization of cementite, the induction hardenability is reduced and a desired level of strength is not obtained after the heat treatment.
Furthermore, for accelerating the spheroidization of cementite, it is also conceivable to perform the steps of cold working and then annealing of a seam welded steel pipe after normalizing. With this method, lamellar cementite in pearlite is likewise mechanically finely broken into fragments, but dislocations being effective in accelerating dispersion of carbon and serving as precipitation sites of cementate disappear in the process of temperature rise for the annealing. As a result, neither accelerated spheroidization nor fine dispersion of carbides is obtained, and therefore a noticeable improvement in cold workability and induction hardenability is not achieved.
It is an object of the present invention to solve the above-mentioned problems in the related art, and provide a seam welded steel pipe made of high carbon steel, which has superior cold workability and induction hardenability, and a method of producing the steel pipe.
DISCLOSURE OF THE INVENTION
With the view of solving the above-mentioned problems, the inventors have conducted intensive studies for an improvement in induction hardenability of a high-carbon steel pipe containing spheroidized cementite. As a result, the inventors have found that, by carrying out reducing rolling on a seam welded steel pipe made of high carbon steel at least in the temperature range of (Ac
1
, transformation point −50° C.) to Ac
1
transformation point with an accumulative reduction in diameter (referred to also as an “effective reduction in diameter” in the present invention) of not less than 30%, a structure containing cementite with diameters of not greater than 1 &mgr;m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High carbon steel pipe excellent in cold formability and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High carbon steel pipe excellent in cold formability and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High carbon steel pipe excellent in cold formability and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3221247

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.