Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
2000-04-05
2004-08-24
Fredman, Jeffrey (Department: 1636)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S320100, C435S325000, C435S455000, C435S252100, C435S471000, C536S023100, C536S023500, C530S350000, C530S380000
Reexamination Certificate
active
06780609
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of genetics, genomics and molecular biology. More particularly, the invention relates to methods and materials used to isolate, detect and sequence a high bone mass gene and corresponding wild-type gene, and mutants thereof. The present invention also relates to the high bone mass gene, the corresponding wild-type gene, and mutants thereof. The genes identified in the present invention are implicated in the ontology and physiology of bone development. The invention also provides nucleic acids, proteins, cloning vectors, expression vectors, transformed hosts, methods of developing pharmaceutical compositions, methods of identifying molecules involved in bone development, and methods of diagnosing and treating diseases involved in bone development. In preferred embodiments, the present invention is directed to methods for treating, diagnosing, preventing and screening for normal and abnormal conditions of bone, including metabolic bone diseases such as osteoporosis.
BACKGROUND OF THE INVENTION
Two of the most common types of osteoporosis are postmenopausal and senile osteoporosis. Osteoporosis affects men as well as women, and, taken with other abnormalities of bone, presents an ever-increasing health risk for an aging population. The most common type of osteoporosis is that associated with menopause. Most women lose between 20-60% of the bone mass in the trabecular compartment of the bone within 3-6 years after the cessation of menses. This rapid loss is generally associated with an increase of bone resorption and formation. However, the resorptive cycle is more dominant and the result is a net loss of bone mass. Osteoporosis is a common and serious disease among postmenopausal women. There are an estimated 25 million women in the United States alone who are afflicted with this disease. The results of osteoporosis are both personally harmful, and also account for a large economic loss due to its chronicity and the need for extensive and long-term support (hospitalization and nursing home care) from the disease sequelae. This is especially true in more elderly patients. Additionally, while osteoporosis is generally not thought of as a life-threatening condition, a 20-30% mortality rate is related to hip fractures in elderly women. A large percentage of this mortality rate can be directly associated with postmenopausal osteoporosis.
The most vulnerable tissue in the bone to the effects of postmenopausal osteoporosis is the trabecular bone. This tissue is often referred to as spongy bone and is particularly concentrated near the ends of the bone near the joints and in the vertebrae of the spine. The trabecular tissue is characterized by small structures which inter-connect with each other as well as the more solid and dense cortical tissue which makes up the outer surface and central shaft of the bone. This criss-cross network of trabeculae gives lateral support to the outer cortical structure and is critical to the biomechanical strength of the overall structure. In postmenopausal osteoporosis, it is primarily the net resorption and loss of the trabeculae which lead to the failure and fracture of the bone. In light of the loss of the trabeculae in postmenopausal women, it is not surprising that the most common fractures are those associated with bones which are highly dependent on trabecular support, e.g., the vertebrae, the neck of the femur, and the forearm. Indeed, hip fracture, Colle's fractures, and vertebral crush fractures are indicative of postmenopausal osteoporosis.
One of the earliest generally accepted methods for treatment of postmenopausal osteoporosis was estrogen replacement therapy. Although this therapy frequently is successful, patient compliance is low, primarily due to the undesirable side-effects of chronic estrogen treatment. Frequently cited side-effects of estrogen replacement therapy include reinitiation of menses, bloating, depression, and fear of breast or uterine cancer. In order to limit the known threat of uterine cancer in those women who have not undergone a hysterectomy, a protocol of estrogen and progestin cyclic therapy is often employed. This protocol is similar to that which is used in birth control regimens, and often is not tolerated by women because of the side-effects characteristic of progestin. More recently, certain antiestrogens, originally developed for the treatment of breast cancer, have been shown in experimental models of postmenopausal osteoporosis to be efficacious. Among these agents is raloxifene (See, U.S. Pat. No. 5,393,763, and Black et al,
J. Clin. Invest
., 93:63-69 (1994)). In addition, tamoxifene, a widely used clinical agent for the treatment of breast cancer, has been shown to increase bone mineral density in post menopausal women suffering from breast cancer (Love et al,
N. Engl. J. Med
., 326:852-856 (1992)).
Another therapy for the treatment of postmenopausal osteoporosis is the use of calcitonin. Calcitonin is a naturally occurring peptide which inhibits bone resorption and has been approved for this use in many countries (Overgaard et al,
Br. Med. J
., 305:556-561 (1992)). The use of calcitonin has been somewhat limited, however. Its effects are very modest in increasing bone mineral density and the treatment is very expensive. Another therapy for the treatment of postmenopausal osteoporosis is the use of bis-phosphonates. These compounds were originally developed for use in Paget's disease and malignant hypercalcemia. They have been shown to inhibit bone resorption. Alendronate, one compound of this class, has been approved for the treatment of postmenopausal osteoporosis. These agents may be helpful in the treatment of osteoporosis, but these agents also have potential liabilities which include osteomalacia, extremely long half-life in bone (greater than 2 years), and possible “frozen bone syndrome,” e.g., the cessation of normal bone remodeling.
Senile osteoporosis is similar to postmenopausal osteoporosis in that it is marked by the loss of bone mineral density and resulting increase in fracture rate, morbidity, and associated mortality. Generally, it occurs in later life, i.e., after 70 years of age. Historically, senile osteoporosis has been more common in females, but with the advent of a more elderly male population, this disease is becoming a major factor in the health of both sexes. It is not clear what, if any, role hormones such as testosterone or estrogen have in this disease, and its etiology remains obscure. Treatment of this disease has not been very satisfactory. Hormone therapy, estrogen in women and testosterone in men, has shown equivocal results; calcitonin and bis-phosphonates may be of some utility.
The peak mass of the skeleton at maturity is largely under genetic control. Twin studies have shown that the variance in bone mass between adult monozygotic twins is smaller than between dizygotic twins (Slemenda et al,
J. Bone Miner. Res
., 6:561-567 (1991); Young et al,
J. Bone Miner. Res
., 6:561-567 (1995); Pocock et al,
J. Clin. Invest
., 80:706-710 (1987); Kelly et al,
J. Bone Miner. Res
., 8:11-17 (1993)), and it has been estimated that up to 60% or more of the variance in skeletal mass is inherited (Krall et al,
J. Bone Miner. Res
., 10:S367 (1993)). Peak skeletal mass is the most powerful determinant of bone mass in elderly years (Hui et al,
Ann. Int. Med
., 111:355-361 (1989)), even though the rate of age-related bone loss in adult and later life is also a strong determinant (Hui et al,
Osteoporosis Int
., 1:30-34 (1995)). Since bone mass is the principal measurable determinant of fracture risk, the inherited peak skeletal mass achieved at maturity is an important determinant of an individual's risk of fracture later in life. Thus, study of the genetic basis of bone mass is of considerable interest in the etiology of fractures due to osteoporosis.
Recently, a strong interest in the genetic control of peak bone mass has developed in the field of osteoporosis. The interest has focused m
Carulli John P.
Johnson Mark L.
Little Randall D.
Recker Robert R.
Fredman Jeffrey
Genome Therapeutics Corporation
Kaushal Sumesh
LandOfFree
High bone mass gene of 1.1q13.3 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High bone mass gene of 1.1q13.3, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High bone mass gene of 1.1q13.3 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3278717