Drug – bio-affecting and body treating compositions – Conjugate or complex of monoclonal or polyclonal antibody,... – Conjugated via claimed linking group – bond – chelating agent,...
Reexamination Certificate
2001-10-31
2004-06-22
Helms, Larry R. (Department: 1642)
Drug, bio-affecting and body treating compositions
Conjugate or complex of monoclonal or polyclonal antibody,...
Conjugated via claimed linking group, bond, chelating agent,...
C424S178100, C530S388850, C530S391700, C435S188000
Reexamination Certificate
active
06752990
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to humanized monoclonal antibodies and fragments or derivatives thereof which specifically bind tumor-associated glycoprotein TAG-72, a human pancarcinoma antigen expressed by various human tumor cells. More specifically, the present invention relates to humanized monoclonal antibodies and fragments or derivatives thereof derived from murine monoclonal antibody CC49 or other murine antibodies which specifically bind TAG-72. The present invention further relates to methods for producing such humanized monoclonal antibodies specific to TAG-72, pharmaceutical and diagnostic compositions containing such humanized monoclonal antibodies, and methods of use thereof for the treatment or diagnosis of cancer.
BACKGROUND OF THE INVENTION
The identification of antigens expressed by tumor cells and the preparation of monoclonal antibodies which specifically bind such antigens is well known in the art. Anti-tumor monoclonal antibodies exhibit potential application as both therapeutic and diagnostic agents. Such monoclonal antibodies have potential application as diagnostic agents because they specifically bind tumor antigens and thereby can detect the presence of tumor cells or tumor antigen in an analyte. For example, use of monoclonal antibodies which bind tumor antigens for in vitro and in vivo imaging of tumor cells or tumors using a labeled form of such a monoclonal antibody is conventional in the art.
Moreover, monoclonal antibodies which bind tumor antigens have well known application as therapeutic agents. The usage of monoclonal antibodies themselves as therapeutic agents, or as conjugates wherein the monoclonal antibody is directly or indirectly attached to an effector moiety, e.g., a drug, cytokine, cytotoxin, etc., is well known.
Essentially, if the monoclonal antibody is attached to an effector moiety the monoclonal antibody functions as a targeting moiety, i.e. it directs the desired effector moiety (which typically possesses therapeutic activity) against a desired target, e.g., a tumor which expresses the antigen bound by the monoclonal antibody. In contrast, when the monoclonal antibody itself operates as a therapeutic agent, the antibody functions both as a targeting moiety—i.e., it will specifically bind a cell which expresses the antigen—and as an effector which mediates therapeutic activity, typically tumor cell Iysis. Such effector functions—including, e.g., antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC), among others—are effected by the portion of the antibody molecule generally referred to in the literature as the Fc portion. One specific tumor antigen against which various monoclonal antibodies have been developed is tumor-associated glycoprotein TAG-72. TAG-72 is expressed on the surface of various human tumor cells, such as the LS174T tumor cell line (American Type Tissue Collection (ATCC) No. CL188, a variant of cell line LS180 (ATCC No. CL187)), a colon adenocarcinoma line. Various research groups have reported the production of monoclonal antibodies to TAG-72. See, e.g., Muraro et al.,
Cancer Res
., 48:4588-4596 (1988); Johnson et al.,
Cancer Res
., 46:850-857 (1986); Molinolo et al.,
Cancer Res
., 50:1291-1298 (1990); Thor et al.,
Cancer Res
., 46:3118-3127 (1986); EP 394,277 to Schlom et al. (assigned to the National Cancer Institute); and U.S. Pat. No. 5,512,443 to Jeffrey Schlom et al. Specific antibodies to TAG-72 which are publicly available include CC49 (ATCC No. HB 9459), CC83 (ATCC No. HB 9453), CC46 (ATCC No. HB 9458), CC92 (ATCC No. HB 9454), CC30 (ATCC No. HB 9457), CC11 (ATCC No. 9455), and CC15 (ATCC No. HB 9460).
One example thereof, CC49, is a murine monoclonal antibody of the IgG
1
isotype. This monoclonal antibody is a second generation monoclonal antibody prepared by immunizing mice with TAG-72 purified using the first generation antibody B72.3. Colcher et al.,
Proc. Natl. Acad. Sci. USA
, 78:3199-3203 (1981). CC49 specifically binds TAG-72, and has a higher antigen-binding affinity than B72.3. Muraro et al.,
Cancer Res
., 48:4588-4596 (1988). This monoclonal antibody has been reported to target human colon carcinoma xenografts efficiently, and to reduce the growth of such xenografts with good efficacy. Molinolo et al.,
Cancer Res
., 50:1291-1298 (1996); Colcher et al.,
J. Natl. Cancer Inst
., 82:1191-1197 (1990). Also, radiolabeled CC49 has been reported to exhibit excellent tumor localization in several ongoing clinical trials.
However, while murine antibodies have applicability as therapeutic agents in humans, they are disadvantageous in some respects. Specifically, murine antibodies, because of the fact that they are of foreign species origin, may be immunogenic in humans. This may result in a neutralizing antibody response (human anti-murine antibody (HAMA) response), which is particularly problematic if the antibodies are desired to be administered repeatedly, e.g., in treatment of a chronic or recurrent disease condition. Also, because they contain murine constant domains they may not exhibit human effector functions.
In an effort to eliminate or reduce such problems, chimeric antibodies have been disclosed. Chimeric antibodies contain portions of two different antibodies, typically of two different species. Generally, such antibodies contain human constant regions and variable regions of another species, typically murine variable regions. For example, some mouse/human chimeric antibodies have been reported which exhibit binding characteristics of the parental mouse antibody, and effector functions associated with the human constant region. See, e.g.: U.S. Pat. No. 4,816,567 to Cabilly et al.; U.S. Pat. No. 4,978,745 to Shoemaker et al.; U.S. Pat. No. 4,975,369 to Beavers et al.; and U.S. Pat. No. 4,816,397 to Boss et al. Generally, these chimeric antibodies are constructed by preparing a genomic gene library from DNA extracted from pre-existing murine hybridomas. Nishimura et al.,
Cancer Res
., 47:999 (1987). The library is then screened for variable region genes from both heavy and light chains exhibiting the correct antibody fragment rearrangement patterns. Alternatively, cDNA libraries are prepared from RNA extracted from the hybridomas and screened, or the variable regions are obtained by polymerase chain reaction. The cloned variable region genes are then ligated into an expression vector containing cloned cassettes of the appropriate heavy or light chain human constant region gene. The chimeric genes are then expressed in a cell line of choice, usually a murine myeloma line. Such chimeric antibodies have been used in human therapy.
Moreover, the production of chimeric mouse-human antibodies derived from CC49 and CC83, which specifically bind TAG-72, has been reported. In this regard, see e.g., EPO 0,365,997 to Mezes et al. (The Dow Chemical Company). One such chimeric CC49 antibody is that produced by the cell line deposited as ATTC No. HB 9884 (Budapest).
Also, Morrison et al. report the preparation of several antitumor chimeric monoclonal antibodies, in
Important Advances in Oncology, Recombinant Chimeric Monoclonal Antibodies
, pp. 3-18 (S. A. Rosenberg, ed., 1990) (J. B. Lippincott, Philadelphia, Pa.). Results of clinical trials with chimeric cMAb-17-1A in patients with metastatic colorectal carcinoma now show that this antibody has a 6-fold longer circulation time and significantly reduced immunogenicity as compared to the murine monoclonal antibody from which it was derived. LoBuglio et al.,
Proc. Natl. Acad. Sci. USA
, 86:4220-4224 (1989); Meredith et al.,
J. Nucl. Med
., 32:1162-1168 (1991).
However, while such chimeric monoclonal antibodies typically exhibit lesser immunogenicity, they are still potentially immunogenic in humans because they contain murine variable sequences which may elicit antibody responses. Thus, there is the possibility that these chimeric antibodies may elicit an anti-idiotypic response if administered to patients. Saleh et al.,
Cancer immunol. Immunother
., 32:185-190 (1990).
For exampl
Anderson W. H. Kerr
Armour Kathryn
Carr Frank J.
Harris William J.
Tempest Philip R.
Helms Larry R.
The Dow Chemical Company
LandOfFree
High affinity humanized anti-TAG-72 monoclonal antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High affinity humanized anti-TAG-72 monoclonal antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High affinity humanized anti-TAG-72 monoclonal antibodies will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3315756