Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...
Reexamination Certificate
1998-03-13
2001-07-03
Chan, Christina Y. (Department: 1644)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
Blood proteins or globulins, e.g., proteoglycans, platelet...
C530S388900, C435S326000
Reexamination Certificate
active
06255458
ABSTRACT:
TECHNICAL FIELD
The invention relates to transgenic non-human animals capable of producing heterologous antibodies, transgenes used to produce such transgenic animals, transgenes capable of functionally rearranging a heterologous D gene in V-D-J recombination, immortalized B-cells capable of producing heterologous antibodies, methods and transgenes for producing heterologous antibodies of multiple isotypes, methods and transgenes for producing heterologous antibodies wherein a variable region sequence comprises somatic mutation as compared to germline rearranged variable region sequences, transgenic nonhuman animals which produce antibodies having a human primary sequence and which bind to human antigens, hybridomas made from B cells of such transgenic animals, and monclonal antibodies expressed by such hybridomas.
BACKGROUND OF THE INVENTION
One of the major impediments facing the development of in vivo therapeutic and diagnostic applications for monoclonal antibodies in humans is the intrinsic immunogenicity of non-human immunoglobulins. For example, when immunocompetent human patients are administered therapeutic doses of rodent monoclonal antibodies, the patients produce antibodies against the rodent immunoglobulin sequences; these human anti-mouse antibodies (HAMA) neutralize the therapeutic antibodies and can cause acute toxicity. Hence, it is desirable to produce human immunoglobulins that are reactive with specific human antigens that are promising therapeutic and/or diagnostic targets. However, producing human immunoglobulins that bind specifically with human antigens is problematic.
The present technology for generating monoclonal antibodies involves pre-exposing, or priming, an animal (usually a rat or mouse) with antigen, harvesting B-cells from that animal, and generating a library of hybridoma clones. By screening a hybridoma population for antigen binding specificity (idiotype) and also screening for immunoglobulin class (isotype), it is possible to select hybridoma clones that secrete the desired antibody.
However, when present methods for generating monoclonal antibodies are applied for the purpose of generating human antibodies that have binding specificities for human antigens, obtaining B-lymphocytes which produce human immunoglobulins a serious obstacle, since humans will typically not make immune responses against self-antigens.
Hence, present methods of generating human monoclonal antibodies that are specifically reactive with human antigens are clearly insufficient. It is evident that the same limitations on generating monoclonal antibodies to authentic self antigens apply where non-human species are used as the source of B-cells for making the hybridoma.
The construction of transgenic animals harboring a functional heterologous immunoglobulin transgene are a method by which antibodies reactive with self antigens may be produced. However, in order to obtain expression of therapeutically useful antibodies, or hybridoma clones producing such antibodies, the transgenic animal must produce transgenic B cells that are capable of maturing through the B lymphocyte development pathway. Such maturation requires the presence of surface IgM on the transgenic B cells, however isotypes other than IgM are desired for therapeutic uses. Thus, there is a need for transgenes and animals harboring such transgenes that are able to undergo functional V-D-J rearrangement to generate recombinational diversity and junctional diversity. Further, such transgenes and transgenic animals preferably include cis-acting sequences that facilitate isotype switching from a first isotype that is required for B cell maturation to a subsequent isotype that has superior therapeutic utility.
A number of experiments have reported the use of transfected cell lines to determine the specific DNA sequences required for Ig gene rearrangement (reviewed by Lewis and Gellert (1989),
Cell,
59, 585-588). Such reports have identified putative sequences and concluded that the accessibility of these sequences to the recombinase enzymes used for rearrangement is modulated by transcription (Yancopoulos and Alt (1985),
Cell,
40, 271-281). The sequences for V(D)J joining are reportedly a highly conserved, near-palindromic heptamer and a less well conserved AT-rich nanomer separated by a spacer of either 12 or 23 bp (Tonegawa (1983),
Nature,
302, 575-581; Hesse, et al. (1989),
Genes in Dev.,
3, 1053-1061). Efficient recombination reportedly occurs only between sites containing recombination signal sequences with different length spacer regions.
Ig gene rearrangement, though studied in tissue culture cells, has not been extensively examined in transgenic mice. Only a handful of reports have been published describing rearrangement test constructs introduced into mice [Buchini, et al. (1987),
Nature,
326, 409-411 (unrearranged chicken &lgr; transgene); Goodhart, et al. (1987),
Proc. Natl. Acad. Sci. USA,
84, 4229-4233) (unrearranged rabbit &kgr; gene); and Bruggemann, et al. (1989),
Proc. Natl. Acad. Sci. USA,
86, 6709-6713 (hybrid mouse-human heavy chain)]. The results of such experiments, however, have been variable, in some cases, producing incomplete or minimal rearrangement of the transgene.
Further, a variety of biological functions of antibody molecules are exerted by the Fc portion of molecules, such as the interaction with mast cells or basophils through Fc&egr;, and binding of complement by Fc&mgr; or Fc&ggr;, it further is desirable to generate a functional diversity of antibodies of a given specificity by variation of isotype.
Although transgenic animals have been generated that incorporate transgenes encoding one or more chains of a heterologous antibody, there have been no reports of heterologous transgenes that undergo successful isotype switching. Transgenic animals that cannot switch isotypes are limited to producing heterologous antibodies of a single isotype, and more specifically are limited to producing an isotype that is essential for B cell maturation, such as IgM and possibly IgD, which may be of limited therapeutic utility. Thus, there is a need for heterologous immunoglobulin transgenes and transgenic animals that are capable of switching from an isotype needed for B cell development to an isotype that has a desired characteristic for therapeutic use.
Based on the foregoing, it is clear that a need exists for methods of efficiently producing heterologous antibodies, e.g. antibodies encoded by genetic sequences of a first species that are produced in a second species. More particularly, there is a need in the art for heterologous immunoglobulin transgenes and transgenic animals that are capable of undergoing functional V-D-J gene rearrangement that incorporates all or a portion of a D gene segment which contributes to recombinational diversity. Further, there is a need in the art for transgenes and transgenic animals that can support V-D-J recombination and isotype switching so that (1) functional B cell development may occur, and (2) therapeutically useful heterologous antibodies may be produced. There is also a need for a source of B cells which can be used to make hybridomas that produce monoclonal antibodies for therapeutic or diagnostic use in the particular species for which they are designed. A heterologous immunoglobulin transgene capable of functional V-D-J recombination and/or capable of isotype switching could fulfill these needs.
In accordance with the foregoing object transgenic nonhuman animals are provided which are capable of producing a heterologous antibody, such as a human antibody.
Further, it is an object to provide B-cells from such transgenic animals which are capable of expressing heterologous antibodies wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen.
In accordance with this foregoing object, it is a further object of the invention to provide hybridoma cells that are capable of producing such heterologous monoclonal antibodies.
Still further, it is an object herein to prov
Kay Robert M.
Lonberg Nils
Chan Christina Y.
DiBrino Marianne
GenPharm International
Townsend and Townsend / and Crew LLP
LandOfFree
High affinity human antibodies and human antibodies against... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High affinity human antibodies and human antibodies against..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High affinity human antibodies and human antibodies against... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2565331