Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2001-10-23
2003-05-13
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S068000, C526S128000, C526S131000, C526S348200, C526S348500, C526S348600
Reexamination Certificate
active
06562919
ABSTRACT:
TECHNICAL FIELD
This invention relates to olefin copolymerization processes using substituted hafnocene catalyst compounds with noncoordinating anions.
BACKGROUND ART
Olefin polymers comprising ethylene and at least one or more &agr;-olefin and optionally one or more diolefin make up a large segment of polyolefin polymers and will be addressed as “ethylene copolymers” herein. Such polymers range from crystalline polyethylene copolymers to largely amorphous elastomers, with a new area of semi-crystalline “plastomers” in between. In particular, ethylene copolymer plastomers are now a well-established class of industrial polymers having a variety of uses associated with their unique properties, such as elastomeric properties and their thermo-oxidative stability. Uses of the plastomers include general thermoplastic olefins, films, wire and cable coatings, polymer modification (by inclusion in blends with other polyolefins), injection molding, foams, footwear, sheeting, functionalized polymers (such as by free-radical graft addition of polar monomers) and components in adhesive and sealant compounds.
Commercially prepared ethylene copolymers have traditionally been made via Ziegler-Natta polymerization with catalyst systems largely based on vanadium or titanium. Newer metallocene catalyst compounds have received attention due to their facile incorporation of larger monomer incorporation and potential increases in polymerization activities. U.S. Pat. No. 5,324,800 describes metallocenes having substituted and unsubstituted cyclopentadienyl ligands which are suitable for producing high molecular weight olefin polymers, including linear, low density copolymers of ethylene with minor amounts of &agr;-olefin.
Additionally, polypropylene is an important industrial polymer. To the extent that catalysts for these polymerizations can be improved, their use provides economic benefit.
Noncoordinating anions useful as catalyst components with such metallocenes are known. The term “noncoordinating anion” is now accepted terminology in the field of olefin polymerization, both by coordination or insertion polymerization and carbocationic polymerization. The noncoordinating anions function as electronic stabilizing cocatalysts, or counterions, for cationic metallocenes which are active for olefin polymerization. The term “noncoordinating anion” as used here and in the references applies both to noncoordinating anions and weakly coordinating anions that coordinate weakly enough to the cationic complex so as to be labile to replacement by olefinically or acetylenically unsaturated monomers at the insertion site. U.S. Pat. No. 5,198,401 describes a preferred noncoordinating anion tetra(perflourophenyl) boron, [B(pfp)
4
]- or [B(C
6
F
5
)
4
]-, wherein the perfluorinated phenyl ligands on the boron make the counterion labile and stable to possible adverse reactions with the metal cation complexes.
The utility of metallocene-based ionic catalysts in high temperature olefin polymerization is described in U.S. Pat. Nos. 5,408,017 and 5,767,208, EP 0 612 768, and WO 96/33227. Each addresses suitable metallocene catalysts for high temperature processes for olefin copolymerization. High molecular weight ethylene/&agr;-olefin copolymers is an objective of EP 0 612 768 and is addressed with catalyst systems based on bis(cyclopentadienyl/indenyl/fluorenyl) hafnocenes which are combined with an alkyl aluminum compound and an ionizing ionic compound providing a non-coordinating anion.
Improved catalyst systems for olefin polymerization are industrial useful.
BRIEF SUMMARY
The invention thus addresses specifically substituted, bridged hafnocene catalyst complexes activated with cocatalysts in which specific choices of catalyst and activator lead to unexpectedly high catalysis activities such that olefin copolymers and copolymers can be prepared at surprisingly high production rates. More specifically, the invention relates to catalysts for polymerizing olefins under supercritical or solution polymerization conditions at a reaction temperature at, or above, 60° C to 225° C, or below. Specific monomers useful in the invention include ethylene and/or propylene and one or more comonomers capable of insertion polymerization with a hafnocene catalyst complex derived from A) a biscyclopentadienyl hafnium organometallic compound having i) at least one unsubstituted cyclopentadienyl ligand or aromatic fused-ring substituted cyclopentadienyl ligand not having additional substitutents on said ligand, ii) one substituted or unsubstituted, aromatic fused-ring substituted cyclopentadienyl ligand, and iii) a covalent bridge connecting the two cyclopentadienyl ligands where the bridge has a single carbon or silicon atom plus additional moities that complete carbon or silicon's valence; and B) an activating cocatalyst, preferably a precursor ionic compound comprising a halogenated tetraaryl-substituted Group 13 anion and a carbenium cation.
Definitions
Carbenium cations are cations in which carbon has a formal valence of 3 leaving it with a +1 charge. Such a species is highly Lewis acidic and is a useful metallocene activator. Isoelectronic or isostructural cations in which the carbon is replaced with for example Si are also useful.
Cyclopentadienyl ligands: Cyclopentadienyl ligands are those ligands that have a cyclopentadiene anion core. These can be unsubstituted or substituted with hydrocarbyl groups as defined below. They can be part of fused-ring systems such as indenyl and fluorenyl. Similarly the use of hetero-atom containing cyclopentadienyl rings or fused rings, where a non-carbon Group 14, 15 or 16 atom replaces one of the ring carbons in the cyclopentadienyl ring or in a ring fused with the cyclopentadienyl ring is within the scope of cyclopentadienyl. The important component of a cyclopentadienyl ligand for this disclosure is the aromatic, substantially planar, five-membered ring of the cyclopentadienide anion. The terms “indenyl” and “fluorenyl” ligands are therefore within the scope of cyclopentadienyl. When this disclosure wishes to refer to cyclopentadienide itself, it uses cyclopentadienide or cyclopentadine anion. See, for example, the teachings of WO 98/37106, having common priority with U.S. Ser. No. 08/999,214, filed Dec. 29, 1997, now U.S Pat. No. 6,451,938 and WO 98/41530, having common priority with U.S. Ser. No. 09/042,378, filed Mar. 13, 1998, now abandoned incorporated by reference for purposes of U.S. patent practice.
Cyclopentadienyl substitutions R and R′, typically include one or more C
1
to C
30
hydrocarbon or hydrocarbylsilyl groups selected from linear, branched, cyclic, aliphatic, aromatic or combined structure groups, including fused-ring or pendant configurations. Examples include methyl, isopropyl, n-propyl, n-butyl, isobutyl, tertiary butyl, neopentyl, phenyl, n-hexyl, cyclohexyl, and benzyl.
T is a bridge with two aryl groups, each substituted with a C
1
-C
20
hydrocarbyl or hydrocarbylsilyl group at least one of which is a linear C
3
or greater substitutent The bridge substituents preferably comprise C
1
-C
20
linear or branched alkyl, or C
1
-C
20
substituted-silyl, substituted phenyl groups, the alkyl or substituted-silyl substituents located in the para- or meta-positions of the aryl groups, preferably wherein at least one of said alkyl substituents is a C
3
or higher linear n-alkyl substitutent, preferably C
4
or higher. Specific examples include methyl, ethyl, n-propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, etc.
Q are hafnocene ligands that can be abstracted by the activator and are ligands that a olefin monomer can insert into as polymerization occurs. Q substituents specifically include fluorinated aryl groups, preferably perfluorinated aryl groups, and include substituted Q groups having substituents additional to the fluorine substitution, such as fluorinated hydrocarbyl groups. Preferred fluorinated aryl groups include phenyl, biphenyl, napthyl, and derivatives thereof. The disclosures of U.S. Pat. Nos. 5,198,
Crowther Donna Jean
Folie Bernard Jean
Cheung William K
ExxonMobil Chemical Patents Inc.
Runyan Charles E.
Wu David W.
LandOfFree
High activity carbenium-activated polymerization catalysts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High activity carbenium-activated polymerization catalysts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High activity carbenium-activated polymerization catalysts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3073646