Data processing: artificial intelligence – Machine learning
Reexamination Certificate
2011-04-19
2011-04-19
Sparks, Donald (Department: 2129)
Data processing: artificial intelligence
Machine learning
Reexamination Certificate
active
07930257
ABSTRACT:
Methods and systems are presented for constructing biological-scale hierarchically structured cortical statistical memory systems using currently available fabrication technology and meta-stable switching devices. Learning content-addressable memory and statistical random access memory circuits are detailed. Additionally, local and global signal modulation of bottom-up and top-down processing for the initiation and direction of behavior is disclosed.
REFERENCES:
patent: 2707223 (1955-04-01), Hollman
patent: 3222654 (1965-12-01), Widrow
patent: 3833894 (1974-09-01), Aviram et al.
patent: 4802951 (1989-02-01), Clark et al.
patent: 4926064 (1990-05-01), Tapang
patent: 4974146 (1990-11-01), Works et al.
patent: 4988891 (1991-01-01), Mashiko
patent: 5293457 (1994-03-01), Arima et al.
patent: 5315162 (1994-05-01), McHardy et al.
patent: 5422983 (1995-06-01), Castelaz et al.
patent: 5475794 (1995-12-01), Mashiko
patent: 5589692 (1996-12-01), Reed
patent: 5649063 (1997-07-01), Bose
patent: 5670818 (1997-09-01), Forouhi et al.
patent: 5706404 (1998-01-01), Colak
patent: 5717832 (1998-02-01), Steimle et al.
patent: 5761115 (1998-06-01), Kozicki et al.
patent: 5783840 (1998-07-01), Randall et al.
patent: 5812993 (1998-09-01), Ginosar et al.
patent: 5896312 (1999-04-01), Kozicki et al.
patent: 5904545 (1999-05-01), Smith et al.
patent: 5914893 (1999-06-01), Kozicki et al.
patent: 5951881 (1999-09-01), Rogers et al.
patent: 5978782 (1999-11-01), Neely
patent: 6026358 (2000-02-01), Tomabechi
patent: 6084796 (2000-07-01), Kozicki et al.
patent: 6128214 (2000-10-01), Kuekes et al.
patent: 6245630 (2001-06-01), Ishikawa
patent: 6248529 (2001-06-01), Connolly
patent: 6256767 (2001-07-01), Kuekes et al.
patent: 6282530 (2001-08-01), Huang
patent: 6294450 (2001-09-01), Chen et al.
patent: 6314019 (2001-11-01), Kuekes et al.
patent: 6330553 (2001-12-01), Uchikawa et al.
patent: 6335291 (2002-01-01), Freeman
patent: 6339227 (2002-01-01), Ellenbogen
patent: 6359288 (2002-03-01), Ying et al.
patent: 6363369 (2002-03-01), Liaw et al.
patent: 6383923 (2002-05-01), Brown et al.
patent: 6389404 (2002-05-01), Carson et al.
patent: 6407443 (2002-06-01), Chen et al.
patent: 6418423 (2002-07-01), Kambhatla et al.
patent: 6420092 (2002-07-01), Yang et al.
patent: 6422450 (2002-07-01), Zhou et al.
patent: 6423583 (2002-07-01), Avouris et al.
patent: 6424961 (2002-07-01), Ayala
patent: 6426134 (2002-07-01), Lavin et al.
patent: 6536106 (2003-03-01), Jackson et al.
patent: 6620346 (2003-09-01), Schulz et al.
patent: 6798692 (2004-09-01), Kozicki et al.
patent: 6855329 (2005-02-01), Shakesheff et al.
patent: 6889216 (2005-05-01), Nugent
patent: 6995649 (2006-02-01), Nugent
patent: 7028017 (2006-04-01), Nugent
patent: 7039619 (2006-05-01), Nugent
patent: 7107252 (2006-09-01), Nugent
patent: 2001/0004471 (2001-06-01), Zhang
patent: 2001/0023986 (2001-09-01), Mancevski
patent: 2001/0024633 (2001-09-01), Lee et al.
patent: 2001/0031900 (2001-10-01), Margrave et al.
patent: 2001/0041160 (2001-11-01), Margrave et al.
patent: 2001/0044114 (2001-11-01), Connolly
patent: 2002/0001905 (2002-01-01), Choi et al.
patent: 2002/0004028 (2002-01-01), Margrave et al.
patent: 2002/0004136 (2002-01-01), Gao et al.
patent: 2002/0030205 (2002-03-01), Varshavsky
patent: 2002/0075126 (2002-06-01), Reitz et al.
patent: 2002/0086124 (2002-07-01), Margrave et al.
patent: 2002/0090468 (2002-07-01), Goto et al.
patent: 2002/0102353 (2002-08-01), Mauthner et al.
patent: 2003/0031438 (2003-02-01), Kambe et al.
patent: 2003/0177450 (2003-09-01), Nugent
patent: 2003/0236760 (2003-12-01), Nugent
patent: 2004/0039717 (2004-02-01), Nugent
patent: 2004/0150010 (2004-08-01), Snider
patent: 2004/0153426 (2004-08-01), Nugent
patent: 2004/0162796 (2004-08-01), Nugent
patent: 2004/0193558 (2004-09-01), Nugent
patent: 2006/0184466 (2006-08-01), Nugent
patent: 2007/0005531 (2007-01-01), George et al.
patent: 1 022 764 (2000-01-01), None
patent: 1 046 613 (2000-04-01), None
patent: 1 069 206 (2001-01-01), None
patent: 0 989 579 (2001-03-01), None
patent: 1 100 106 (2001-05-01), None
patent: 1 115 135 (2001-07-01), None
patent: 1 134 304 (2001-09-01), None
patent: 2071126 (1996-12-01), None
patent: WO 00/44094 (2000-07-01), None
patent: WO 03/017282 (2003-02-01), None
Girolami et al. “A Temporal Model of Linear Anti-Hebbian” Learning Neural Processing Letters 4: 1996, pp. 139-148.
Baratta et al. “A Hardware Implementation of Hierarchical Neural Networks for Real-Time Quality Control Systems in Industrial Applications”, ICANN, 1997, vol. 1327, pp. 1229-1234.
Christopher Johansson & Anders Lansner, “Towards Cortex Sized Artificial Nervous System”, Department of Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm Sweden.
Peter Weiss, “Circuitry in a Nanowire: Novel Growth Method May Transform Chips,” Science News Online, vol. 161, No. 6; Feb. 9, 2002.
Press Release, “Nanowire-based electronics and optics comes one step closer,” Eureka Alert, American Chemical Society; Feb. 1, 2002.
Weeks et al., “High-pressure nanolithography using low-energy electrons from a scanning tunneling microscope,” Institute of Physics Publishing, Nanotechnology 13 (2002), pp. 38-42; Dec. 12, 2001.
CMP Cientifica, “Nanotech: the tiny revolution”; CMP Cientifica, Nov. 2001.
Diehl, et al., “Self-Assembled, Deterministic Carbon Nanotube Wiring Networks,” Angew. Chem. Int. Ed. 2002, 41, No. 2; Received Oct. 22, 2001.
G. Pirio, et al., “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Institute of Physics Publishing, Nanotechnology 13 (2002), pp. 1-4, Oct. 2, 2001.
Leslie Smith, “An Introduction to Neural Networks,” Center for Cognitive and Computational Neuroscience, Dept. of Computing & Mathematics, University of Stirling, Oct. 25, 1996; http//www.cs.stir.ac.uk/˜Iss/NNIntro/InvSlides.html.
Mark K. Anderson, “Mega Steps Toward the Nanochip,” Wired News, Apr. 27, 2001.
Collins et al., “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science, vol. 292, pp. 706-709, Apr. 27, 2001.
Landman et al., “Metal-Semiconductor Nanocontacts: Silicon Nanowires,” Physical Review Letters, vol. 85, No. 9, Aug. 28, 2000.
John G. Spooner, “Tiny tubes mean big chip advances,” Cnet News.com, Tech News First, Apr. 26, 2001.
Jeong-Mi Moon et al., “High-Yield Purification Process of Singlewalled Carbon Nanotubes,” J. Phys. Chem. B 2001, 105, pp. 5677-5681.
“A New Class of Nanostructure: Semiconducting Nanobelts Offer Potential for Nanosensors and Nanoelectronics,” Mar. 12, 2001, http://www.sciencedaily.com/releases/2001/03/010309080953.htm.
Hermanson et al., “Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions,” Materials Science, vol. 294, No. 5544, Issue of Nov. 2, 2001, pp. 1082-1086.
Press Release, “Toshiba Demonstrates Operation of Single-Electron Transistor Circuit at Room Temperature,” Toshiba, Jan. 10, 2001.
J. Appenzeller et al., “Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes,” Applied Physics Letters, vol. 78, No. 21, pp. 3313-3315, May 21, 2001.
David Rotman, “Molecular Memory, Replacing silicon with organic molecules could mean tiny supercomputers,” Technology Review, May 2001, p. 46.
Westervelt et al., “Molecular Electronics,” NSF Functional Nanostructures Grant 9871810, NSF Partnership in Nanotechnology Conference, Jan. 29-30, 2001; http://www.unix.oit.umass.edu/˜nano/NewFiles/FN19—Harvard.pdf.
Niyogi et al., “Chromatographic Purification of Soluble Single-Walled Carbon Nanotubes (s-SWNTs),” J. Am. Chem. Soc 2001, 123, pp. 733-734, Received Jul. 10, 2000.
Duan et al., “Indium phosphide nanowires as building blocks for
Chang Li-Wu
Knowm Tech, LLC
Lopez Kermit D.
Ortiz Luis M.
Ortiz & Lopez PLLC
LandOfFree
Hierarchical temporal memory utilizing nanotechnology does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hierarchical temporal memory utilizing nanotechnology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hierarchical temporal memory utilizing nanotechnology will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2706072