Image analysis – Applications – Target tracking or detecting
Reexamination Certificate
2008-04-29
2008-04-29
Azarian, Seyed (Department: 2624)
Image analysis
Applications
Target tracking or detecting
C382S274000, C348S094000
Reexamination Certificate
active
10782230
ABSTRACT:
There is provided a hierarchical shadow detection system for color aerial images. The system performs well with highly complex images as well as images having different brightness and illumination conditions. The system consists of two hierarchical levels of processing. The first level involves, pixel level classification, through modeling the image as a reliable lattice and then maximizing the lattice reliability using the EM algorithm. Next, region level verification, through further exploiting the domain knowledge is performed. Further analysis show that the MRF model based segmentation is a special case of the pixel level classification model. A quantitative comparison of the system and a state-of-the-art shadow detection algorithm clearly indicates that the new system is highly effective in detecting shadow regions in an image under different illumination and brightness conditions.
REFERENCES:
patent: 5374932 (1994-12-01), Wyschogrod et al.
patent: 6208417 (2001-03-01), Itagaki et al.
patent: 6349113 (2002-02-01), Mech et al.
patent: 6775014 (2004-08-01), Foote et al.
patent: 6956898 (2005-10-01), Podilchuk et al.
patent: 7110569 (2006-09-01), Brodsky et al.
patent: 7139409 (2006-11-01), Paragios et al.
Christopher Jaynes, Stephen Webb, R. Matt Steele, Michael Brown, and W. Brent Seales, “Dynamic shadow removal from front projection displays”, Visualization, 2001. VIS '01. Proceedings, pp. 175-182, 2001.
Salvador et al., “Shadow Identification and Classification Using Invariant Color Models”, IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, 2001, pp. 1545-1548.
Joseph M. Scanlan, Douglas M. Chabries, and Richard W. Christiansen, “A Shadow detection and removal algorithm for 2-D images”, IEEE Acoustic Speech Signal processing, 1990, pp. 2057-2060.
Caixia Jiang and Matthew O. Ward, “Shadow Identification”, International Conference on CVPR, 1992, pp. 606-612.
Graham D. Finlayson, Steven D. Hordley, and Mark S. Drew, “Removing shadows from images”, ECCV 2002, pp. 823-836, 2002.
Y. Weiss, “Deriving Intrinsic Images From Image Sequences”, ICCV 2001, pp. 68-75.
Gureth Funka-lea and Ruzena Bajcsy, “Combining Color and Geometry for the Active, Visual Recognition of Shadows”, ICCV 1995, pp. 203-209.
Graham Finlayson and Ruixia Xu, “Illuminant and Gamma Comprehensive Normalization in logRGB Space”, Pattern Recognition Letter, 24 (2003), pp. 1679-1690.
Charles A. Bouman, “Markov Random Fields and Stochastic Image Models”, Tutorial presented at ICIP 1995.
I. Mikic, P. Cosman, G. Kogut, and M. M. Trivedi, “Moving shadow and object detection in traffic scenes”, Proceedings of Int'l Conference on Pattern Recognition, Sep. 2000, pp. 321-324.
Jurgen Stauder, Roland Mech, and Jorn Osterman, “Detection of moving cast shadows for object segmentation”, IEEE Trans. On Multimedia, vol. 1, No. 1, 1999, pp. 65-76.
T. Gevers, A. W. M. Smeulders, “Color-based object recognition”, Pattern Recognition, vol. 32, 1999, pp. 453-464.
Yao Jian
Zhang ZhongFei (Mark)
Azarian Seyed
Milde & Hoffberg LLP
Research Foundation of State University of New York
LandOfFree
Hierarchical static shadow detection method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hierarchical static shadow detection method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hierarchical static shadow detection method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3910533