Data processing: artificial intelligence – Machine learning
Reexamination Certificate
2007-01-11
2009-11-17
Vincent, David R (Department: 2129)
Data processing: artificial intelligence
Machine learning
C706S016000, C706S025000
Reexamination Certificate
active
07620608
ABSTRACT:
A hierarchy of computing modules is configured to learn a cause of input data sensed over space and time, and is further configured to determine a cause of novel sensed input data dependent on the learned cause. At least one of the computing modules has a sequence learner module configured to associate sequences of input data received by the computing module to a set of causes previously learned in the hierarchy.
REFERENCES:
patent: 5255348 (1993-10-01), Nenov
patent: 5712953 (1998-01-01), Langs
patent: 6122014 (2000-09-01), Panusopone et al.
patent: 6195622 (2001-02-01), Altschuler et al.
patent: 6400996 (2002-06-01), Hoffberg et al.
patent: 6468069 (2002-10-01), Lemelson et al.
patent: 6567814 (2003-05-01), Banker et al.
patent: 6714941 (2004-03-01), Lerman et al.
patent: 6751343 (2004-06-01), Ferrell et al.
patent: 2003/0069002 (2003-04-01), Hunter et al.
patent: 2003/0123732 (2003-07-01), Miyazaki et al.
patent: 2004/0002838 (2004-01-01), Oliver et al.
patent: 2004/0148520 (2004-07-01), Talpade et al.
patent: 2004/0267395 (2004-12-01), Discenzo et al.
patent: 2005/0063565 (2005-03-01), Nagaoka et al.
patent: 2005/0190990 (2005-09-01), Burt et al.
patent: 2005/0222811 (2005-10-01), Jakobson et al.
patent: 2006/0184462 (2006-08-01), Hawkins
patent: 2006/0235320 (2006-10-01), Tan et al.
patent: 2006/0248026 (2006-11-01), Aoyama et al.
patent: 2006/0248073 (2006-11-01), Jones et al.
patent: 2006/0259163 (2006-11-01), Hsiung et al.
patent: 2007/0005531 (2007-01-01), George et al.
patent: 2007/0192264 (2007-08-01), Hawkins et al.
patent: 2007/0192268 (2007-08-01), Hawkins et al.
patent: 2007/0192269 (2007-08-01), Saphir et al.
patent: 2007/0192270 (2007-08-01), Hawkins et al.
patent: 2007/0276774 (2007-11-01), Ahmad et al.
patent: 2008/0059389 (2008-03-01), Jaros et al.
patent: 1557990 (2005-07-01), None
patent: WO 2006/063291 (2006-06-01), None
patent: WO 2009/006231 (2009-01-01), None
George et al., Dileep, “Invariant Pattern Recognition using Bayesian Inference on Hierarchical Sequences”, 2004.
Hasegawa et al., Yasuhisa, “Learning Method for Hierarchical Behavior Controller”, 1999.
Lenser et al., Scott, “A Modular Hierarchical Behavior-Based Architecture”, 2001.
Hoey, J., “Hierarchical Unsupervised Learning of Facial Expression Categories,” 2001, IEEE, 0-7695-1293-3, pp. 99-106.
Agrawal, R. et al., “Mining Sequential Patterns,” IEEE, 1995, pp. 3-14.
Fine, S. et al., “The Hierarchical Hidden Markov Model: Analysis and Applications,” Machine Learning, Jul. 1998, pp. 41-62, vol. 32.
Foldiak, P., “Learning Invariance from Transformation Sequences,” Neural Computation, 1991, pp. 194-200, vol. 3, No. 2.
Fukushima, K., “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biol. Cybernetics, 1980, pp. 193-202, vol. 36.
George, D. et al., “A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual Cortex,” Mar. 2005.
George, D. et al, “Invariant Pattern Recognition Using Bayesian Inference on Hierarchical Sequences”, Technical Report, Sep. 17, 2004, pp. 1-8, U.S.A.
Hawkins, J. et al., “On Intelligence,” Sep. 2004, Times Books, Henry Holt and Company, New York, NY 10011.
Hyvarinen, A. et al., “Bubbles: A Unifying Framework for Low-Level Statistical Properties of Natural Image Sequences,” J. Opt. Soc. Am. A., 2003, pp. 1237-1252, vol. 20, No. 7.
International Search Report & Written Opinion, PCT/US2005/044729, May 14, 2007, 14 pages.
Lee, T. et al, “Hierarchical Bayesian Inference in the Visual Cortex”, Journal of the Optical Society of America, Jul. 7, 2003, pp. 1434-1448, vol. 20, No. 7, U.S.A.
Murphy, K. et al., “Using the Forest to See the Trees: A Graphical Model Relating Features, Objects and Scenes,” Advances in Neural Processing System, 2004, vol. 16.
Murray, S.O. et al., “Shaper Perception Reduces Activity in Human Primary Visual Cortex,” Proceedings of the Nat. Acad. Of Sciences of the USA, Nov. 2002, pp. 15164-151169, vol. 99, No. 23.
Olshausen, B.A. et al., “A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing Information,” Jnl. Of Neuroscience, Nov. 1993.
Riesenhuber, M. et al, “Hierarchical Models of Object Recognition in Cortex”, Nature Neuroscience, Nov. 1999, pp. 1019-1025, vol. 2, No. 11, U.S.A.
Stringer, S.M. et al., “Invariant Object Recognition in the Visual System with Novel Views of 3D Objects,” Neural Computation, Nov. 2002, pp. 2585-2596, vol. 14, No. 11.
Thomson, A.M. et al., “Interlaminar Connections in the Neocortex,” Cerebral Cortex, 2003, pp. 5-14, vol. 13, No. 1.
Tsukada, M, “A Theoretical Model of the Hippocampal-Cortical Memory System Motivated by Physiological Functions in the Hippocampus”, Proceedings of the 1993 International Joint Conference on Neural Networks, Oct. 25, 1993, pp. 1120-1123, vol. 2, Japan.
Van Essen, D.C. et al., “Information Processing Strategies and Pathways in the Primate Visual System,” An Introduction to Neural and Electronic Networks, 1995, 2nded.
Vlajic, N. et al., “Vector Quantization of Images Using Modified Adaptive Resonance Algorithm for Hierarchical Clustering”, IEEE Transactions on Neural Networks, Sep. 2001, pp. 1147-1162, vol. 12, No. 5.
Wiskott, L. et al., “Slow Feature Analysis: Unsupervised Learning of Invariances,” Neural Computation, 2002, pp. 715-770, vol. 14, No. 4.
Adelson, E.H. et al., “The Perception of Shading and Reflectance,” Perception as Bayesian Inference, Knill, D.C. et al., ed., 1996, pp. 409-423, Cambridge University Press, UK.
Demeris, Y. et al., “From Motor Babbling to Hierarchical Learning by Imitation: A Robot Developmental Pathway,” Proceedings of the Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, 2005, pp. 31-37.
Felleman, D.J. et al., “Distributed Hierarchical Processing in the Primate Cerebral Cortex,” Cerebral Cortex, Jan./Feb. 1991, pp. 1-47, vol. 1.
Guo, C-E. et al., “Modeling Visual Patterns by Integrating Descriptive and Generative Methods,” International Journal of Computer Vision, May 29, 2003, 28 pages, vol. 53, No. 1.
Han, K. et al., “Automated Robot Behavior Recognition Applied to Robotic Soccer,” In Proceedings of the IJCAI-99 Workshop on Team Behaviors and Plan Recognition, 1999, 6 pages.
Hawkins, J. et al., “On Intelligence,” 2004, pp. 23-29, 106-174, 207-232, Times Books.
Hernandez-Gardiol, N. et al., “Hierarchical Memory-Based Reinforcement Learning,” Proceedings of Neural Information Processing Systems, 2001, 7 pages.
Hinton, G.E. et al., “The “Wake-Sleep” Algorithm for Unsupervised Neural Networks,” Science, May 26, 1995, pp. 1158-116, vol. 268.
Isard, M. et al., “ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework,” Lecture Notes in Computer Science 1406, Burkhardt, H. et al., ed., 1998, pp. 893-908, Springer-Verlag, Berlin.
Lewicki, M.S. et al., “Bayesian Unsupervised Learning of Higher Order Structure,” Moser, M.C. et al., ed., Proceedings of the 1996 Conference in Advances in Neural Information Processing Systems 9, 1997, pp. 529-535.
Pearl, J., “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,” 1988, pp. 143-223, Morgan Kaufmann Publishers, Inc.
Sinha, P. et al., “Recovering Reflectance and Illumination in a World of Painted Polyhedra,” Fourth International Conference on Computer Vision, Berlin, May 11-14, 1993, pp. 156-163, IEEE Computer Society Press, Los Alamitos, CA.
Sudderth, E.B. et al., “Nonparametric Belief Propagation and Facial Appearance Estimation,” Al Memo 2002-020, Dec. 2002, pp. 1-10,
Astier Frank
George Dileep
Hawkins Jeffrey
Jaros Robert G.
Fenwick & West LLP
Kennedy Adrian L
Numenta, Inc.
Vincent David R
LandOfFree
Hierarchical computing modules for performing spatial... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hierarchical computing modules for performing spatial..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hierarchical computing modules for performing spatial... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4097698