Heterocyclic aromatic anion salts, and their uses as ionic...

Compositions – Electrically conductive or emissive compositions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S297000, C429S188000, C429S199000, C429S199000, C502S102000, C502S300000, C502S302000, C345S049000, C359S265000, C549S014000

Reexamination Certificate

active

06365068

ABSTRACT:

It is an object of the present invention to provide ionic compounds in which the anionic charge is delocalized, and their uses.
Derivatives of non-nucleophilic or slightly basic anions have an increasing importance in all applications of chemistry to stabilize or activate various cationic charges such as those of colouring materials or intermediate species in polymerizations. They also act as intermediates for various reactions of organic chemistry. In electrochemistry, media other than water are more and more relied upon for applications such as primary or secondary generators, supercapacitances, systems of modulation of light. The introduction of a weak ionic conductivity in the usual materials (polymers, combustible liquids), enables to disperse electrostatic charges.
Derivatives which are derived from coordination anions of the type BF
4

, PF
6

, AsF
6

, are mainly known, however, they have a limited stability due to dissociation equilibrium releasing the fluoride ion and the corresponding Lewis acid, both causing parasite reactions and presenting a toxicity which is not negligible. The perchlorate anion ClO
4

is thermally unstable and dangerous. On the other hand, anions derived from bis(perfluoroalkylsulfonyl)imides which present interesting properties are known. However, this type of chemistry is relatively difficult to control, in particular during the preparation of precursors of the type R
F
SO
2
—.
On the other hand, pyrimidinetrione (barbituric acid) and its derivatives which are obtained by replacing an atom of oxygen by an atom of sulfur (thiobarbituric acid) are known. Also known is the possibility to produce salts with 2,2-dimethyl-1,3-dioxane-4,6-dione (“Meldrum acid”). In both cases, the acids are relatively weak (pK
A
) of the order of 5 in water, of the order of 10 in dimethylsulfoxide). Their salts are neither easily soluble nor easily dissociable in organic solvents. In the case of pyrimidinetrione, the hydrogen bonds formed by the protons associated with nitrogen reinforce this insolubility. Their substitution with alkyl radicals strongly decreases the strength of the acid.
The inventors have now found that, surprisingly, the solubility and dissociation of the salts obtained from pyridiminandrione derivatives and its homologues by substitution on the carbon atom in position 5, or on the nitrogens in positions 1 and 3 is considerably increased when the substituents have an electronically attracting power. The same is true with respect to compounds derived from 1,3-dioxane-4,6-diones and their homologues which carry a substituent which is an electroattractor on carbon 2 and/or carbon 5. The choice of substituents and the numerous possible combinations in three substitution sites for each family give various materials for which it is possible to modulate the physical or chemical properties to a large extent. These compounds have interesting properties for the above-mentioned applications and their preparation calls for materials which are more readily accessible. For example, it is possible to obtain stable anionic heterocycles incorporating smaller quantities of fluorine, or to use as starting products fluorinated compounds which are easily accessible. Certain compounds may totally prevent having to rely on fluorine atoms.
A compound of the present invention comprises at least one anionic part associated to at least one cationic part M in sufficient number to ensure an electronic neutrality of the assembly. It is characterized in that M is an hydroxonium, a nitrosonium NO
+
, an ammonium —NH
4
+
, a metallic cation having a valence m, an organic cation having a valence m or an organometallic cation having a valence m, and in that the anionic part is an aromatic heterocycle corresponding to one of the formulae
in which:
Y
1
, Y
2
, Y
3
, Y
4
and Y
5
represent independently from one another a carbonyl group, a sulfonyl group, a thiocarbonyl group, a thionyl group, a —C(═NCN)— group or a —C(═C(CN)
2
)— group;
Z represents an electroattractor radical having a Hammett parameter at least equal to that of a fluorine atom;
each of the substituents R
A
, R
B
, R
C
and R
D
represents independently from one another a monovalent or trivalent organic radical, or is part of a polymer chain, one at least of the substituents R
C
and R
D
being a perfluorinated radical. Preferably, the organic radical has 1 to 20 carbon atoms.
In a compound of the present invention, the cation may be a metallic cation selected from alkali metal cations, alkali-earth metal cations, transition metal cations, trivalent metal cations, rare earth cations. By way of example, there may be mentioned Na
+
, Li
+
, K
+
, Sm
3+
, La
3+
, Ho
3+
, Sc
3+
, Al
3+
, Yb
3+
, Lu
3+
, Eu
3+
.
The cation may also be an organometallic cation, for example a metallocenium. By way of example, there may be mentioned cations derived from ferrocene, titanocene, zirconocene, an indenocenium or a metallocenium arene, cations of transition metals complexed with ligands of the phosphine type possibly having a chirality, organometallic cations having one or more alkyl or aryl groups covalently fixed to an atom or a group of atoms, such as methylzinc, phenylmercury, trialkyltin or trialkyllead cations. The organometallic cation may be part of a polymer chain.
According to a variant of the invention, the compounds of the invention have an organic cation selected from the group consisting of R
3
O
+
(oxonium), NR
4
+
(ammonium), RC(NHR
2
)
2
+
(amidinium), C(NHR
2
)
3
+
(guanidinium), C
5
R
6
N
+
(pyridinium), C
3
R
5
N
2
+
(imidazolium), C
3
R
7
N
2
+
(imidazolinium), C
2
R
4
N
3
+
(triazolium), SR
3
+
(sulfonium), PR
4
+
(phosphonium),IR
2
+
(iodonium), (C
6
R
5
)
3
C
+
(carbonium). In a given cation, the radicals R may all be identical. However, a cation may also include radicals R which are different from one another. A radical R may be an H or it is selected from the following radicals:
alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl, sila-alkyl, sila-alkenyl, aryl, arylalkyl, alkyl-aryl, alkenyl-aryl, dialkylamino and dialkylazo radicals;
cyclic or heterocyclic radicals possibly comprising at least one lateral chain comprising heteroatoms such as nitrogen, oxygen, sulfur;
cyclic or heterocyclic radicals possibly comprising heteroatoms in the aromatic nucleus;
groups comprising a plurality of aromatic or heterocyclic nuclei, condensed or non-condensed, possibly containing at least one hydrogen, oxygen, sulfur or phosphorus atom.
When an onium cation carries at least two radicals R which are different from H, these radicals may together form an aromatic or non-aromatic cycle, possibly enclosing the center carrying the cationic charge.
When the cationic part of a compound of the invention is an onium cation, it may be either in the form of an independent cationic group which is only bound to the anionic part by the ionic bond between the positive charge of the cation and the negative charge of the anionic part. In this case, the cationic part may be part of a recurring unit of a polymer.
An onium cation may also be part of the radical Z carried by the anionic aromatic nucleus. In this case, a compound of the invention constitutes a zwitterion.
When the cation of a compound of the invention is an onium cation, it may be selected so as to introduce in the compound substituents enabling to confer to said compound specific properties. For example, the cation M
+
may be a cationic heterocycle with aromatic character, including at least one nitrogen atom which is alkylated in the cycle. By way of example, there may be mentioned an imidazolium, a triazolium, a pyridinium, a 4-dimethylamino-pyridinium, said cations possibly carrying a substituent on the carbon atoms of the cycle. Among these cations, those which give an ionic compound according to the invention in which the melting point is lower than 150° C. ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heterocyclic aromatic anion salts, and their uses as ionic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heterocyclic aromatic anion salts, and their uses as ionic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heterocyclic aromatic anion salts, and their uses as ionic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2907747

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.