Active solid-state devices (e.g. – transistors – solid-state diode – With shielding
Reexamination Certificate
2002-09-30
2004-10-19
Nguyen, Cuong (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
With shielding
Reexamination Certificate
active
06806557
ABSTRACT:
FIELD OF THE INVENTION
This invention in general relates to microdevices having a structure that requires a vacuum cavity and, more particularly, to a microdevice and procedure for making a microdevice having a single crystalline silicon getter for maintaining the vacuum in the cavity surrounding the microdevices.
BACKGROUND OF THE INVENTION
The microdevices manufactured by MEMS technology are playing key roles in many areas. For instance, micromechanical gyroscopes have enabled several important control systems in transportation and commercial applications. Other microdevices such as pressure sensors, accelerometers, actuators and resonators fabricated by MEMS technology are also used in many areas.
Some microdevices, such as micro gyroscopes and resonators contain a microstructure that needs to be maintained within a vacuum-sealed cavity. For these types of devices, there is a continuing need to improve the longevity of the vacuum. A vacuum-sealed cavity is typically susceptible to pressure increases due to gas generation during the hermetic sealing process and outgassing from the package material, sealing material, and components within the cavity. This pressure variation can degrade device performance and reduce device lifetime for many hermetically sealed microdevices.
It has been known to maintain a sealed vacuum within a cavity by using getters to adsorb vapor and gas species. Two different kinds of getters currently used in devices are metallic getters and non-metallic getters. It has been known to use the metallic getters in package level vacuum sealing methods. A non-metallic getter formed from organic salts of silicon for an electron tube application is described in U.S. Pat. No. 4,771,214. Another non-metallic getter formed from deposited amorphous silicon or poly-silicon for flat panel display applications is described in U.S. Pat. No. 5,614,785.
Conventional procedures have been met with varying degrees of success. For instance, with metallic getters there is a serious reliability issue caused by getter particles falling down during fabrication process or after device experiencing vibration or shock due to poor mechanical strength and too large pore size of the used metallic getter. The presence of separated getter particles has been identified as a major failure mode for some micro gyroscopes sealed with porous metallic getters. Additionally, because metallic getters typically have large pore size, the required size of the getter is normally large. This size restriction and the getter fabrication process normally prohibit metallic getters from use in wafer level vacuum seals. Metallic getters are also cost prohibitive for some applications.
With relation to non-metallic getters, the mechanical properties of known amorphous or poly-crystalline silicon will change with deposition condition and are difficult to repeat. Known types of non-metallic getters are typically used in large sized cavities with large planar areas because of their limited thickness of only a couple of microns. Other types of getters are directed to adsorbing moisture within a cavity that is not perfectly hermetic.
It is, therefore, desirable to provide an improved microdevice and method of making a microdevice (such as a micro gyroscope) having a microstructure resided in a hermetically sealed cavity with a vacuum for a long time to overcome most, if not all, of the preceding problems.
REFERENCES:
patent: 4541003 (1985-09-01), Otsuka et al.
patent: 4771214 (1988-09-01), Takenaka et al.
patent: 5610431 (1997-03-01), Martin
patent: 5614785 (1997-03-01), Wallace et al.
patent: 5650568 (1997-07-01), Greiff et al.
patent: 5837562 (1998-11-01), Cho
patent: 6225145 (2001-05-01), Choi et al.
patent: 6277666 (2001-08-01), Hays et al.
patent: 6323550 (2001-11-01), Martin et al.
patent: 6338284 (2002-01-01), Najafi et al.
patent: 0 851 492 (1998-07-01), None
Anderson, R. et al. “Investigation of Porous Silicon Vapor Sensing”Sensors and Actuators;A21-A23- 1990, pp, 835-839.
Dresser, M.J. et al. “The Absorption and Decomposition of NH3on Si(100) Detection of the NH2(a) Species.”Surface Science; 1989, pp. 75-89.
Dillon, A.C. et al. “Diethylsilane Decomposition on Silicon Surfaces Studied Using Transmission FTIR Spectroscopy,”J.Electrochemical Society; vol. 139, No. 2, Feb. 1992, pp. 537-541.
Robinson, M.B. et al. “Porous Silicon Photoluminescence Versus HF Etching: No Correlation with Surface Hydrogen Species.”American Institute of Physics; Mar. 1993, pp, 1493-1495.
Collins, R.T. et al. “Photoinduced Hydrogen Loss From Porous Silicon.”American Institute of Physics; Oct. 1992, pp, 1649-11651.
Takahagi, T. et al. “Control of the Chemical Reactivity of a Silicon Single-Crystal Surface Using the Chemical Modification Technique.”American Institute of Physics; Sep. 1990, pp, 2187-2191.
Cheng, C.C. et al. “Direct Determination of Absolute Monoslayer Coverages of Chemisorbed C2H2and C2H4on Si(100).”American Institute of Physics; Apr. 1992, pp. 3693-3699.
Corazza, A. et al. “Vacuum Maintenance in Hermetically Sealed MEMs Packages.”SAES Getters.
Smith, R.L. et al. “Thick Films of Silicon Nitiride.”Sensors and Actuators; A21-A23, 1990, pp. 830-834.
Petersen, K. “Silicon as a Mechanical Material.”Proceedings of the IEEE; vol. 70. No. 5, May 1982, pp. 420-456.
Kozlowski, F. et al. “Generating a Microplasms with Porous Silicon.”Transducers, 1995, 90-PB4.
Smith, R.L. et al. “Porous Silicon Morphologies and Formation Mechanism.”Sensors and Actuators; A21-A23, 1990, pp. 825-829.
Smith, R.L. et al. “Porous Silicon Formation Mechanisms.”American Institute of Physics; Apr. 1992, pp. R1-R22.
Giorgi, T.A., “An Updated Review of Getters and Gettering.”Journal of Vacuum Science Technology; A3 (2) Mar./Apr. 1995. pp. 417-423.
Kullberg, R. “Processes and Materials for Creating and Maintaining Reliable Vacuum and Other Controlled Atmospheres in Hermetically Sealed MEMs Packages.”SAES Getters.
Henkel, S. “Novel Gas Sensor Exploits a Property of Porous Silicon.” www.sensormag.com, May 2002.
Higashi, G.S. et al. “Comparison of Si(111) Surfaces Prepared Using Aqueous Solutions of NH4F Versus HF.”American Institute of Physics;Apr. 1991, pp. 1656-1658.
Hirashita, N. et al. “Effects of Surface Hydrogen on the Air Oxidation at Room Temperature of HF-treated SI(100) Surfaces. ”American Institute of Physics; Jan. 1990, pp. 451-453.
Motorola Inc.
Nguyen Cuong
LandOfFree
Hermetically sealed microdevices having a single crystalline... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hermetically sealed microdevices having a single crystalline..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hermetically sealed microdevices having a single crystalline... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3275749