Coating processes – Solid particles or fibers applied
Reexamination Certificate
2002-04-26
2004-04-20
Parker, Fred J. (Department: 1762)
Coating processes
Solid particles or fibers applied
C427S190000, C427S191000, C427S192000, C427S199000, C427S096400, C427S108000, C427S110000
Reexamination Certificate
active
06723379
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The current invention relates to packages for photonic devices, optical devices, micro-mechanical devices, micro-electromechanical systems (MEMS) devices or micro-optoelectromechanical systems (MOEMS) devices, and more particularly, to methods for manufacturing packages having a hermetically sealed chamber covered by a transparent window using cold-gas dynamic spray material deposition.
BACKGROUND OF THE INVENTION
Photonic, optical and micro-mechanical devices are typically packaged such that the active elements (i.e., the emitters, receivers, micro-mirrors, etc.) are disposed within a sealed chamber to protect them from handling and other environmental hazards. In many cases, it is preferred that the chamber be hermetically sealed to prevent the influx, egress or exchange of gasses between the chamber and the environment. Of course, a window must be provided to allow light or other electromagnetic energy of the desired wavelength to enter and/or leave the package. In some cases, the window will be visibly transparent, e.g. if visible light is involved, but in other cases the window may be visibly opaque while still being “optically” transparent to electromagnetic energy of the desired wavelengths. In many cases, the window is given certain optical properties to enhance the performance of the device. For example, a glass window may be ground and polished to achieve certain flatness specifications in order to avoid distorting the light passing therethrough. In other cases, anti-reflective or anti-refractive coatings may be applied to the window to improve light transmission therethrough.
Hermetically sealed micro-device packages with windows have heretofore been produced using cover assemblies with metal frames and glass window panes. To achieve the required hermetic seal, the glass window pane has heretofore been fused to its metallic frame by heating it in a furnace at a temperature exceeding the glass transition temperature, T
G
(typically at or above 900° C.). However, because the fusing temperature is above T
G
, the original surface finish of the glass pane is typically ruined, making it necessary to finish or re-finish (e.g., grinding and polishing) both surfaces of the window pane after fusing in order to obtain the necessary optical characteristics. This polishing of the window panes requires additional process steps during manufacture of the cover assemblies, which steps tend to be relatively time and labor intensive, thus adding significantly to the cost of the cover assembly, and hence to the cost of the overall package. In addition, the need to polish both sides of the glass after fusing requires the glass to project both above and below the attached frame. This restricts the design options for the cover assembly with respect to glass thickness, dimensions, etc., which can also result in increased material costs.
Once a cover assembly with a hermetically sealed window is prepared, it is typically seam welded to the device base (i.e., substrate) in order to produce the finished hermetically sealed package. Seam welding uses a precisely applied AC current to produce localized temperatures of about 1,100° C. at the frame/base junction, thereby welding the metallic cover assembly to the package base and forming a hermetic seal. To prevent distortion of the glass windowpane or package, the metal frame of the cover assembly should be fabricated from Kovar alloy or another alloy having a CTE (i.e., coefficient of thermal expansion) which is similar to that of the transparent window material and to the CTE of the package base.
While the methods described above have heretofore produced useable window assemblies for hermetically sealed micro-device packages, the relatively high cost of these window assemblies is a significant obstacle to their widespread application. A need therefore exists, for package and component designs and assembly methods which reduce the labor costs associated with producing each package.
A need still further exists for package and component designs and assembly methods which will minimize the manufacturing cycle time required to produce a completed package.
A need still further exists for package and component designs and assembly methods which reduce the number of process steps required for the production of each package. It will be appreciated that reducing the number of process steps will reduce the overhead/floor space required in the production facility, the amount of capital equipment necessary for manufacturing, and handling costs associated with transferring the work pieces between various steps in the process. A reduction in the cost of labor may also result. Such reductions would, of course, further reduce the cost of producing these hermetic packages.
A need still further exists for package and component designs and assembly methods which will reduce the overall materials costs associated with each package, either by reducing the initial material cost, by reducing the amount of wastage or loss during production, or both.
SUMMARY OF THE INVENTION
The present invention disclosed and claimed herein comprises, in one aspect thereof, a method for manufacturing a cover assembly including a transparent window portion and a metallic frame that can be joined to a micro-device package base to form a hermetically sealed micro-device package. A sheet of a transparent material is provided having a window portion defined thereupon, the window portion having finished top and bottom surfaces. A frame-attachment area is prepared on the sheet, the frame-attachment area circumscribing the window portion. A first quantity of powdered metal particles is sprayed onto the prepared frame-attachment area of the sheet using a jet of gas, the gas being at a temperature below the fusing temperature of the metal particles. The jet of gas has a velocity sufficient to cause the metal particles to merge with one another upon impact with the sheet and with one another so as to form an initial continuous metallic coating adhering to the frame-attachment area of the sheet. Successive quantities of powdered metal particles are applied over the initial continuous metallic coating using the jet of gas so as to form a continuous built-up metallic frame incorporating the initial continuous metallic coating as its base and having an overall thickness that is a predetermined thickness.
The present invention disclosed and claimed herein comprises, in another aspect thereof, a method for manufacturing a cover assembly for a micro-device package. A sheet of a transparent material is provided having a window portion defined thereupon. A first quantity of powdered particles is sprayed onto the sheet using a jet of gas, the gas being at a temperature below the fusing temperature of the particles. The jet of gas has a velocity sufficient to cause the particles to merge with one another upon impact with the sheet and with one another so as to form an initial continuous coating adhering to the sheet and circumscribing the window portion thereof. Successive quantities of powdered particles are applied over the initial continuous coating using the jet of gas so as to form a continuous built-up frame circumscribing the window portion and incorporating the initial continuous coating.
The present invention disclosed and claimed herein comprises, in yet another aspect thereof, a cover assembly that can be welded to a micro-device package base to form a hermetically sealed micro-device package. The cover assembly includes a sheet of a transparent material having a window portion defined thereupon. A built-up metallic frame adheres to the sheet and circumscribes the window portion, the frame having been deposited onto the sheet as follows: First, a first quantity of powdered metal particles is sprayed onto a prepared frame-attachment area of the sheet using a jet of gas, the gas being at a temperature below the fusing temperature of the metal particles, and the jet of gas having a velocity sufficient to cause the metal particles to merge with one another upon im
Howison & Arnott , L.L.P.
Parker Fred J.
LandOfFree
Hermetically sealed micro-device package using cold-gas... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hermetically sealed micro-device package using cold-gas..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hermetically sealed micro-device package using cold-gas... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3186817