Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
1998-12-22
2001-02-27
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Cardiovascular
Reexamination Certificate
active
06193670
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to a surgical device which is used in catheterization procedures, and more particularly, to a device with a pressure sensing feature used to inject a hemostatic agent at the end of the catheterization procedure.
DISCUSSION OF THE PRIOR ART
In a percutaneous intravascular procedure, such as performing an angioplasty or angiography, access to the vascular space is generally obtained by using the so called Seldinger technique. In this technique, a hollow needle is used to create a puncture wound through the skin, the underlaying muscle tissue and through the wall of selected blood vessel, such as the femoral artery. Next, a guide wire is inserted through the tubular needle until its distal end is located in the blood vessel. The needle is then removed from the guide wire and replaced with an introducer sheath and dilator. The introducer sheath typically will include a self-sealing hemostatic valve on its proximal end. The guide wire is then advanced into the vascular space through the introducer and directed to a preselected area of the vascular system. Once the guide wire is positioned, a catheter, such as a balloon catheter in the case of a balloon angioplasty procedure, is advanced over the guide wire until the balloon is at a selected location, such as a stenosis in a coronary artery.
At the conclusion of the procedure, when the catheter, guide wire and introducer sheath are removed from the puncture site there may be profuse bleeding, hematoma or dissections, especially where the patient has been on an anticoagulant therapy, such as heparin, coumadin, aspirin or alpha, beta
II
blockade thrombolytic agent. Manual pressure may have to be applied for a prolonged time period to obtain hemostasis. So as to not unduly tie-up trained medical personnel, an external vascular clamp, sand bags or a pressure dressing may be used to apply pressure to the puncture site to help ensure satisfactory, permanent hemostasis.
Prior art methods have addressed the problem of achieving hemostasis following removal of a percutaneously applied intravascular introducer in such uses as angiography or angioplasty. The Makower et al. U.S. Pat. No. 5,290,310 describes a device for delivering a hemostatic substance subcutaneously against a penetration site in the wall of a blood vessel. An instrument containing a toroidal-shaped collagen plug within a barrel thereof is made to surround the exterior of the tubular introducer. The instrument includes a pusher mechanism for injecting the collagen plug into the puncture wound and against the exterior wall of the blood vessel at the site of the puncture.
The Weldon et al. U.S. Pat. No. 5,129,882 also discloses a surgical implement for injecting a hemostatic agent in a puncture wound by routing the injection device through the lumen of the introducer sheath after it has been retracted sufficiently so that the distal end thereof is no longer in the blood vessel. Then, by deploying a plunger, the hemostatic agent is forced out of the instrument and against the exterior wall of the artery proximate the puncture wound.
U.S. Pat. Nos. 4,744,364, 4,852,974, 4,890,612, 5,021,059 and 5,222,974, issued to Kenneth Kensey, each describe a method and apparatus for effecting hemostasis by first inserting an anchoring device through the puncture wound and into the blood vessel while using a filament attached to the anchoring device to hold it in place as an appropriate sealant is injected into the wound. The anchoring device prevents entrance of the sealing material into the blood vessel and serves as anchor and guide for addressing selected vessels.
U.S. Pat. No. 5,676,689 to Kensey et al discloses another system for sealing percutaneous puncture in a blood vessel. The system includes a hemostatic closure device, a blood vessel locator device for determining the position of the blood vessel and a deployment instrument for deploying the closure device within the puncture to seal it. The blood vessel locator device is tubular with a port at a distal end and valve at a proximal end. When the distal end is positioned within a blood vessel, blood will enter the port and flow out of the valve, thus enabling the physician to determine whether or not the locator distal end is positioned within the blood vessel.
Other devices for injecting a hemostatic agent into a puncture wound following a vascular procedure include the Arias et al. U.S. Pat. No. 5,281,197, the Haaga U.S. Pat. No. 4,838,280, the Fowler U.S. Pat. No. 5,192,300, the Magro et al. U.S. Pat. No. 4,738,658 and published European Patent Application 0 476 178 A1 of Bioplex Medical, B. V. Furthermore, pending application Ser. No. 08/629,022, of which some of the present inventors are named as co-inventors, addresses the problem by providing a self-contained assembly of a combined introducer sheath, introducer dilator and a device for effecting hemostasis following a vascular procedure.
For the most part, these references describe devices that are intended to be used in combination with the tubular introducer sheath for deploying a hemostatic agent following withdrawal of any guide wire, guide catheter or working catheter at the conclusion of the procedure. These devices require significant skill in their use to preclude potential complications occasioned by unwanted placement of the hemostatic agent within the blood vessel itself.
A need exists for a device for effecting hemostasis following a vascular procedure which can be inserted into the introducer sheath and which will indicate whether its ejection port is within the blood vessel. In our earlier design described in the aforereferenced application, we depended on a flash of blood flowing into a transparent tube to indicate that the ejection ports on the combined introducer and hemostatic injection device were exterior to the blood vessel. When the device of the present invention indicates that the ejection ports are outside the blood vessel, the hemostatic agent can then be injected into a lumen of the device leading to the ejection ports on the device at a location proximate the outer wall of the blood vessel to be sealed. Such a device effectively insures that the hemostatic agent will not be injected into the blood vessel.
While the prior art has included catheters with pressure sensing devices, such as the Brooks U.S. Pat. No. 4,809,709, Griffin et al. U.S. Pat. No. 4,878,898, Miller U.S. Pat. No. 4,901,731 , Frank U.S. Pat. No. 4,924,872 and the Goodin et al. U.S. Pat. No. 4,928,693, no provision has been made in these devices for injecting a hemostatic fluid nor do they describe a pressure indicator that comprises a pulsation type micro-manometer.
SUMMARY OF THE INVENTION
The present invention is a device for sealing percutaneous punctures in a blood vessel that is used in conjunction with a tubular introducer sheath having a distal end insertable into a wound resulting from a percutaneous puncture in a blood vessel wall. The device consists of an elongated tubular member having a hub member on its proximal end and a soft tip and ports proximate its distal end. The elongated tubular member has a lumen extending therethrough. The lumen is closed at its distal end and its proximal end terminates at a hemostatic seal in the hub.
The hub member also includes an elongated grooved track formed on its outer surface. A transparent member overlays the grooved track and cooperates with the groove to form a sealed fluid tight track. The transverse bore extends from a first end of the grooved track to the lumen of the tubular member. A second transverse bore extends from the second end of the grooved track to a fluid tight air compression chamber. This chamber may be formed on the exterior surface of the hub member or it may be formed in the hub member between the outer surface and the lumen of the tubular member. If the chamber is formed on the outer surface, the transparent member overlays this also to form a sealed fluid tight chamber. In an alternative embodiment of the hub member, a compliant membrane seals the f
Holmes David
Rydell Mark A.
Schwartz Robert S.
Van Tassel Robert A.
Lateef Marvin M.
Mantis Mercader Eleni
Nikolai Mersereau & Dietz, P.A.
Ronai Abraham
Tricardia LLC
LandOfFree
Hemostatic agent delivery device having built-in pressure... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hemostatic agent delivery device having built-in pressure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hemostatic agent delivery device having built-in pressure... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2573630