Hemodialysis catheter

Surgery – Means for introducing or removing material from body for... – Material introduced into and removed from body through...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S006160, C604S266000

Reexamination Certificate

active

06461321

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to hemodialysis. It relates, more particularly, to hemodialysis catheters.
BACKGROUND OF THE INVENTION
Hemodialysis, as practiced today, normally employs one of two types of catheter to remove blood from the patient for processing and return processed blood to the patient. Most commonly, a catheter tube containing two lumens is used, each lumen having a generally semi-cylindrical or D-shape configuration. This type of catheter is frequently referred to as a dual lumen catheter. Alternatively, two tubes, each with a full cylindrical configuration, are used separately to remove blood for dialysis and return the processed blood.
Flow rates possible with conventional dual lumen catheters are usually lower than those achievable where separate tubes are used to remove blood from a vein for dialysis and then return processed blood back to the vein.
Thus, the use of two tubes has become more and more popular as the capacity (maximum flow rate) of hemodialysis membranes has increased.
Hemodialysis membranes are now able to process blood at over 500 ml of flow per minute. Even higher processing rates are foreseeable. However, problems occur with both the line introducing purified blood back into the vein (the venous or outflow line) and the line removing blood for purification (the arterial or intake line) at flow rates above 300 ml per minute. A high flow rate from the venous line may cause whipping or “firehosing” of the tip in the vein with consequent damage to the vein lining. A corresponding high flow rate into the arterial line may cause the port to be sucked into the vein wall, resulting in occlusion. It should be understood, of course, that both lines normally access the superior vena cava and the designations are used for differentiation purposes.
Speed of flow through a catheter lumen, whether it be in a single lumen or a dual lumen catheter, is controlled by a number of factors including the smoothness of the wall surface, the internal diameter or cross-sectional area of the tube lumen, and the length of the tube lumen. The most important factor is the cross-sectional area of the tube lumen. The force or speed of the fluid flow in a tube lumen for a given cross-sectional area is controlled by the external pumping force, of course. This is a positive pressure pushing processed blood through the venous lumen and a negative (suction) pressure pulling unprocessed blood through the arterial lumen.
Problems encountered in providing for a high flow rate through a catheter are magnified in a dual lumen catheter construction. Because each of the lumens in a dual lumen catheter normally has a D-shape, it has been assumed that flow rates are limited. Furthermore, such dual lumen catheters are, to a great extent, catheters with a main port which opens at the end of a lumen substantially on the axis of the lumen. Thus, “firehosing” frequently results. Fire-hosing may damage the vein wall, triggering the build-up of fibrin on the catheter tip. Fibrin build-up may result in port occlusion.
There are dual lumen catheters which utilize side ports for both outflow and inflow. An example is the catheter disclosed in the Cruz et al. U.S. Pat. No. 5,571,093. However, such catheters have not been entirely successful in solving problems related to hemodialysis with dual lumen catheters, e.g., high incidences of catheter port occlusion as well as some degree of fire-hosing.
Catheters of almost all types are also pliable so that they do not damage body tissue when they are in-situ. Pliability can create a problem during insertion, however, because the catheters can kink when they meet resistance. Thus, there is often a need for a certain amount of stiffness so that the catheters can be directed within body vessels or cavities. There are currently two methods of providing this stiffness; stylets and guide wires.
A stylet can be a single or a twisted wire with a blunt end that is inserted into the catheter to make it stiff. The stylet is often used with bullet nose catheters and maintains its position within the catheter as the catheter is inserted. The stiffened catheter is advanced into the blood vessel with the stylet.
In contrast, guide wires are used to both stiffen the catheter and to provide a guide for the insertion. Commonly, the guide wire is inserted into the blood vessel before the catheter. The catheter is then inserted into the blood vessel over the wire, and follows the wire as it travels inside the vessel. Guide wires are most often utilized with catheters that are inserted deep into the body, such as with central venous catheters that are inserted into the heart. The thin guide wire more easily makes the bends and turns necessary for this type of placement.
In guide wire insertion where the catheter must be inserted over the guide wire, catheters with open ends are normally utilized to permit passage of the guide wire. These catheters are more likely to cause damage to body tissue during insertion than bullet nose catheters, for example, because of their flat ends and side edges. Open ended catheters are also more likely to damage tissue than bullet nose catheters while in-situ. Nevertheless, the need for deep catheter insertion has heretofore made guide wire insertion of open-ended catheters the accepted procedure in spite of the disadvantage of their flat or blunt end design.
As an alternative, bullet nose catheters have occasionally been used with guide wires in some applications by incorporating a small hole through the nose for the wire to pass through. This approach has generally been found undesirable, however, because the hole in the bullet nose can later collect particulate matter and be a focal point for infection.
SUMMARY OF THE INVENTION
An object of the invention is to provide an improved dual lumen hemodialysis catheter.
Another object is to provide a dual lumen hemodialysis catheter which accommodates flow rates substantially as high as the latest separate lumen catheters.
Still another object is to provide a dual lumen hemodialysis catheter which is capable of returning processed blood to the patient at high flow rates without harmful firehosing of the catheter tip.
Yet another object is to provide a dual lumen hemodialysis catheter which permits high flow rates while minimizing trauma and potential red cell damage so as to substantially avoid clotting.
A further object is to provide a dual lumen hemodialysis catheter which substantially reduces the incidence of port occlusion.
Still a further object is to provide a dual lumen hemodialysis catheter in which occlusion of the return line port is substantially avoided regardless of the flow rate.
Still a further object is to provide a dual lumen hemodialysis catheter which facilitates reversal of the venous and arterial lines to relieve port occlusion without increasing the potential for mixing of dialyzed blood with blood being removed for dialysis
Another object of the invention is to provide an improved bullet nose bolus for use on catheters ranging in size from 3 French to 22 French in any medical application.
A further object is to provide a bullet nose bolus that protects the leading edge of the catheter outflow or inflow port from rubbing against the vessel wall.
Another object is to provide a bullet nose bolus for a catheter that will not kink during insertion.
Another object of the present invention is to provide an improved catheter for use with a guidewire.
Still another object is to provide a bullet nose bolus for a catheter which is compatible with a guide wire yet does not require an axially extending hole through the nose.
Another object is to provide a bullet nose bolus for a catheter that can be inserted simultaneously with a guide wire through a flexible introducer sheath that is essentially the same size as the catheter itself.
Another object is to provide a bullet nose bolus for a catheter that follows a guide wire through bends in a patient's vein and turns without causing increased resistance to passage through the vein.
Another object is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hemodialysis catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hemodialysis catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hemodialysis catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2992127

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.