Helmet mounted brake lights

Illumination – Supported by vehicle structure – Bicycle or motorcycle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S105000, C362S106000, C362S802000

Reexamination Certificate

active

06406168

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains generally to helmet lighting systems. More particularly, the present invention pertains to a motorcycle helmet lighting system. The present invention is particularly, but not exclusively, useful for a motorcycle helmet lighting system capable of establishing wireless links between a transmitter mounted on a motorcycle and one or more motorcycle helmets.
BACKGROUND OF THE INVENTION
In the mid 80's, the U.S. government researched automotive tail light positioning and found that significantly fewer accidents occur in vehicles having a brake light positioned at or near the highest point on the rear of the vehicle. In 1986, the U.S. government mandated that automobiles sold in the U.S. be equipped with a third brake light positioned near the highest point on the rear of the vehicle. To date, a similar law has not been passed for motorcycles.
The risks associated with riding a motorcycle are generally higher than driving an automobile for several reasons. First, motorcycles are smaller than automobiles and other motorists often have a hard time seeing motorcycles on the roads. Further, motorcycles are generally capable of higher rates of acceleration than automobiles causing other motorists to often lose track of the position of a nearby motorcycle. Also, motorcycles are generally capable of higher rates of de-acceleration than automobiles causing motorcycles to often be hit from behind by motorists that are unable to stop in time. Finally, motorcycles lack the weight, protective structure and other assorted safety devices such as airbags that are offered by automobiles.
A typical tail light assembly for a motorcycle includes a running light, a brake light, turn indicators and hazard indicators. For most motorcycles, the running light is always lit when the ignition circuit is energized. In a few motorcycles, the running light is only energized when the headlight is manually turned on by the rider. Typically the tail light is mounted at the rear of the motorcycle above the rear fender. Depending on the size and style of the motorcycle, the tail light is often relatively low to the ground and hard to see by other motorists.
Some states now require motorcyclist to wear helmets. To be effective as a safety device, a motorcycle helmet must be properly sized to fit the wearer. Typically, a motorcycle owner acquires a properly sized helmet for personal use and an additional helmet for passenger use. The passenger helmet may or may not be sized for a specific individual. When a helmet lighting system is used, it is important that the light on the drivers helmet be operative when a passenger is not riding on the motorcycle. Additionally, when a passenger is riding on the motorcycle, it is important that the light on the passengers helmet be operative and the light on the drivers helmet be inoperative. This setup avoids shining a bright light in the passenger's face.
Several additional safety concerns must be considered when contemplating the installation of a lighting system on a helmet. First, a wireless link between the helmet and the motorcycle is preferred over a wired system to prevent a variety of possible wire related injuries that could occur during an accident. Second, safe voltages and lamp temperatures should be used to avoid exposing the rider to these hazards in the event that an accident exposes the rider to a live circuit or lamp.
In a wireless system, a power source such as a battery must generally be attached to the helmet. For the helmet assembly, a small battery is beneficial for several reasons. First, a large, heavy battery may cause discomfort for the rider. Additionally, large batteries are generally more expensive than smaller batteries. To complement a smaller battery, the power draw of the receiver components should be minimized to lengthen battery life and reduce the need for battery recharge or replacement. On the other hand, for a helmet lighting system to be effective, a minimum lamp illumination intensity must be provided to allow nearby motorists to see the lamp signal. Consequently, there is a need to produce a high intensity helmet lighting system that is energy efficient.
Heretofore, suggestions have been made to achieve energy efficiency in a helmet light system. For example, U.S. Pat. No. 5,353,008 which issued to Eikenberry et al. for an invention entitled “Headgear with Safety Light” discloses a motorcycle helmet with a brake light that includes a duty cycled receiver circuit for receiving a radio-frequency signal from a transmitter located on the motorcycle. Rather than using a duty cycled receiver circuit, the present invention uses a duty cycled power circuit to energize the brake lamp. This advancement recognizes that modern receiver circuits use relatively little power, and that most of the power that is dissipated in a helmet lighting system is used to energize the lamps. Further, the present invention contemplates that a helmet mounted running lamp may be operable whenever the motorcycle is in use. This continuous lamp usage mandates that energy efficiency be achieved in the lamp circuit.
In light of the above, it is an object of the present invention to provide an energy efficient lighting system for a vehicle helmet. It is another object of the present invention to provide a wireless system capable of displaying brake lights, running lights, turn indicators, hazard lights, and emergency lights for police motorcycles, on a single vehicle helmet. It is yet another object of the present invention to provide a helmet lighting system having a transmitter capable of broadcasting a unique code set, thereby preventing interference between motorcycles when two or more system equipped motorcycles are in close proximity. It is yet another object of the present invention to provide a helmet lighting system having a transmitter capable of broadcasting more than one code set, thereby allowing several helmet receivers to be used independently with one transmitter. Yet another object of the present invention is to provide a helmet lighting system that is safe, easy to use and comparatively cost effective.
SUMMARY OF THE PREFERRED EMBODIMENTS
The present invention is directed to a helmet lighting system for a motorcycle helmet that includes a transmitter mounted on a motorcycle for transmitting a radio-frequency signal to a receiver mounted on the motorcycle helmet. The transmitter further includes a transmitter microprocessor that is mounted on the motorcycle and connected to the lighting circuits of the motorcycle. Specifically, the brake light circuit, the running light circuit, the turn signal circuits and the hazard circuit can all be monitored by the transmitter microprocessor. When the transmitter microprocessor receives a voltage from one of the motorcycle lighting circuits indicating that the lighting circuit is energized, the transmitter microprocessor generates a function-specific code and sends that code to a modulator. The modulator receives the code from the transmitter microprocessor and modulates the code onto a radio-frequency signal for transmission by an antenna.
The helmet lighting system further includes a receiver mounted on the helmet. The receiver energizes one or more lamps in response to the radio-frequency signal from the transmitter. The lamps are mounted on the exterior surface of the helmet and positioned to face rearward. For the present invention, the receiver includes an antenna, a demodulator and a receiver microprocessor, all attached to the helmet. The antenna receives the radio-frequency signal containing the function-specific code and forwards the signal to the demodulator. Next, the demodulator extracts the function-specific code from the radio-frequency signal and forwards the code to the receiver microprocessor.
To ensure that the radio-frequency signal that is received by the helmet originated from the proper motorcycle transmitter, the receiver microprocessor compares the received code to a stored code. If the received code does not match the stored code

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Helmet mounted brake lights does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Helmet mounted brake lights, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Helmet mounted brake lights will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2911331

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.