Height adjustable pedestal for chairs and tables

Horizontally supported planar surfaces – Vertically adjustable – With force-multiplying means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C108S150000, C297S344190, C297S344220, C248S404000, C248S061000

Reexamination Certificate

active

06182583

ABSTRACT:

BACKGROUND
Height adjustable work chairs are used in home, office, education, and industry. These height adjustable chairs typically include a seat that swivels in relation to the base of the chair. The height adjustment is typically obtained from a telescoping height adjustment mechanism which is usually a gas spring. This gas spring is a telescoping column that includes a gas cylinder which includes a pressurized gas such as nitrogen; a piston extending downwardly from the cylinder which supports the cylinder in an elevated position and includes an end which secures the gas spring to the chair base; and a valve located within the cylinder which allows the movement of gas within the cylinder.
The top of the cylinder is secured within the seat support mechanism which is the mechanism that supports the chair seat and chair back. The seat support mechanism is also known as the chair tilt mechanism, particularly on chairs with adjustable backrests or chairs having a tilting chair seat. Also included in the seat support mechanism is a lever that actuates the valve located in the gas spring. The valve typically includes a pin extending from the top of the cylinder which when depressed by the lever allows gas to move through the valve and lower the cylinder if a force exceeding gas pressure is applied on the spring or raise the cylinder if no force is applied on the spring. The gas spring may additionally include an air or oil damping mechanism which slows the rate of compression and extension for the gas spring.
The gas spring which is responsible for height adjustment in work chairs also allows the seat to swivel in relation to the base. The gas spring cylinder which is secured to the chair seat through the seat support mechanism rotates freely in relation to the piston which supports it. It is this rotation which provides the swivel in most work chairs. Additionally the end of the piston which is attached to the chair base may also include ball bearings or other means to allow the piston to rotate in relation to the base while remaining secured to the base. In this way, the gas spring which is a very inexpensive mechanism to manufacture provides both height adjustment and swivel movement of the chair seat in relation to the base.
The gas spring is supported in a vertical position between the chair base and the chair tilt mechanism by a vertical stand tube. The stand tube includes a top opening sized so that the cylinder of the gas spring can move vertically and rotationally in relation to the stand tube, yet remain supported by the stand tube regardless of the vertical or rotational position of the cylinder.
The stand tube is typically a metal cylinder which includes top and bottom ends. An opening on the top end which is sized to accommodate a gas spring cylinder which moves vertically in relation to the stand tube. In some instances a bushing may be disposed within the opening to minimize friction between the gas spring cylinder and the stand tube. The opening serves to both guide the gas spring cylinder as well as to vertically support the gas spring which extends between the chair seat support mechanism and the chair base.
The bottom end of the stand tube cylinder typically is tapered for insertion into the chair base. The tapered bottom end is typically pressed into a tapered socket at the hub or center of the chair base. The stand tube bottom may include an opening through which the piston of the gas spring can extend so as to be secured to the chair base. Alternatively, the stand tube bottom end can include an appropriate structure for securing the gas spring piston. This structure also may include an opening in the stand tube bottom end.
An alternative to the gas spring is a metal coil type spring which includes an oil damping mechanism. The application of a spring of this type is shown in U.S. Pat. No. 5,078,351. An alternative to the typical stand tube arrangement is shown in U.S. Pat. No. 5,433,409. The inventors of both of these alternative chair components believe that their components address structural deficiencies found in existing chair component assemblies.
These structural deficiencies are most often derived from the use of a gas spring as both the structural support for the chair as well as the mechanism which provides vertical adjustability to the chair. The dual purpose of the gas spring, as well as the manner that the gas spring is supported, and the manner that the gas spring is attached to the chair seat support mechanism and the chair base, may cause the gas spring or the supporting structure for the gas spring to fail.
Gas spring mechanisms are remarkably strong despite the light gauge metal used in their construction. The cylinder portion of the gas spring, which is typically constructed of light gauge metal, is a sealed assembly which includes an internally held compressed gas. The cylinder also comprises the structure which provides the attachment between the height adjustable chair pedestal and the chair seat. Typically, the cylinder of the gas spring is attached to the seat support or chair tilt mechanism within a tapered socket or a hole within the seat support or chair tilt mechanism. Accordingly, all of the weight on the chair seat must be transferred through the light gauge cylinder wall. The forces exerted on the cylinder may include high bending moments, if the weight of the chair user is not sitting on center of the chair seat, in addition to the compressive forces acting downward on the cylinder of the gas spring due to the users weight.
These compressive and bending forces may result in considerable stresses exerted on the light gauge cylinder walls which can result in a catastrophic failure of the cylinder. Additionally, the concentration of stresses in each of the chair components results in shape distortions to occur in these components. These distortions result in play or looseness developing, particularly at the high stress attachment points of the components. Play is known to develop particularly early at the attachment location of the cylinder to the seat support or tilt mechanism. This play, once created, can further accentuate stress concentrations at specific locations on the cylinder wall which also can lead to a catastrophic failure of the cylinder wall.
Similar forces exist between the gas spring cylinder and the stand tube. As has been previously described, the stand tube supports the gas spring by providing a top opening through which the cylinder of the gas spring passes. The gas spring cylinder moves vertically, as well as rotationally in relation to this opening. The stand tube may include a bushing to reduce friction between the cylinder and the stand tube.
Forces exerted on the gas spring cylinder may be transferred to the stand tube at the opening location. As the opening must be made larger than the cylinder to permit both vertical and rotational movement of the cylinder, these forces may be transferred from a small segment of the thin wall of the cylinder to the stand tube along the short support surface provided by the opening. This concentration of forces can cause failure of the cylinder either by shearing the cylinder wall or by causing a small dent in the cylinder wall which could lead to the cylinder buckling at a later time. Forces that are not transferred to the stand tube are transferred first to the piston of the gas spring cylinder and then to the chair base. The forces on the piston can also cause the small diameter rod of the piston to buckle.
Other stand tubes include a honeycomb structure within the interior of the stand tube cylinder to prevent a concentration of forces on the gas spring cylinder at an opening. In this design, forces on the gas spring that are transferred to the stand tube are transferred over a large surface of the honeycomb structure within the stand tube interior. The honeycomb structure flexes in response to such forces assuring a large contact surface for force transfer and minimizing shear forces on the gas spring. The excessive flexure within this design results in a chair hav

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Height adjustable pedestal for chairs and tables does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Height adjustable pedestal for chairs and tables, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Height adjustable pedestal for chairs and tables will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2599594

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.