Heating regeneration type organic rotor member and method...

Heat exchange – Regenerator – Heat collector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C165S004000, C165S008000

Reexamination Certificate

active

06820681

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a heating regeneration type organic rotor member which is a honeycomb structural body capable of being continuously regenerated by heating with rotational driving and highly increased in mechanical strength by using a fiber substrate comprising organic fibers as an essential component and, furthermore, capable of efficiently adsorbing and removing simultaneously the moisture and odor components in the air by the action of moisture adsorbent and active carbon carried on the fiber substrate, and a method for producing the same.
There have been proposed various rotor members which can be continuously regenerated by heating with rotational driving and have dehumidification function or deodorizing function. The rotor members will be explained below referring to dehumidification as an example.
FIG. 1
schematically shows a typical dehumidification rotor member. A cylindrical honeycomb structural body carrying a moisture adsorbent such as zeolite, active alumina, silica gel, lithium chloride, or calcium chloride is provided around a core material
1
in such a manner that the opening face of the structural body forms a cylindrical section, thereby to obtain a dehumidification rotor member
2
. The dehumidification rotor member
2
is rotated in the direction of arrow
3
with the core material
1
as a central axis, and water contained in air
4
which is to be dried is adsorbed and removed by the action of the moisture adsorbent while the air
4
passes through the dehumidification rotor member
2
, thereby obtaining a dry air
5
. Regenerating air
6
which regenerates the dehumidification rotor member
2
is heated by a heat source
7
and is converted to hot air
8
, which removes water from the dehumidification rotor member
2
, whereby the dehumidification rotor member
2
is regenerated and simultaneously a high humidity air
9
containing water is obtained. The thus obtained dry air
5
and high humidity air
9
are supplied to a given space depending on the purpose of use. The deodorization rotor member is also the same as the dehumidification rotor member in basic conception, and odor components are adsorbed and removed using a cylindrical honeycomb structural body carrying an adsorbent such as active carbon.
Temperature of the high-temperature air which regenerates the rotor member is about 150-200° C., and hence the rotor member is required to have a high heat resistance. Furthermore, since the heat source is provided nearby, the rotor member must additionally have a high flame retardance. Therefore, hitherto, inorganic materials having high heat resistance and non-combustibility have been used for rotor members. For example, JP-A-54-19548 proposes a rotating regeneration type dehumidification material obtained by coating a mixed solution prepared by adding kaolin, colloidal silica and an organic resin emulsion to a molecular sieve as a moisture adsorbent on a support such as a wire net, a metallic foil, a glass fiber sheet or an asbestos paper, and drying the coat, and, furthermore, impregnating the coated support with ethyl silicate and hardening it by hydrolysis, followed by heating at 250° C. or higher to burn and remove the organic resin emulsion. As for continuous and dry type dehumidifiers to be regenerated by heating, JP-A-63-240921 proposes a dehumidification member obtained by adding an inorganic binder such as colloidal silica, colloidal alumina, colloidal titanium, metal alkoxide, bentonite or sepiolite to zeolite as a moisture adsorbent, followed by mixing them, extrusion molding the resulting mixture to a honeycomb structure, and then firing the molded product at about 800° C. JP-A-6-226037 proposes a honeycomb-shaped adsorption rotor obtained by forming an inorganic fiber paper made with addition of a small amount of pulp and binder to silica-alumina ceramics fibers into a honeycomb structure, laminating and adhering the honeycomb-shaped body into a cylindrical form, firing the honeycomb-shaped cylindrical body at high temperatures to remove organic materials, impregnating the honeycomb cylindrical body with a sol prepared by mixing zeolite as a moisture adsorbent with an aqueous sol of silica or alumina as an inorganic binder, and drying the honeycomb cylindrical body at high temperatures. JP-A-5-115737 proposes a honeycomb adsorption rotor obtained by impregnating a honeycomb formed body mainly composed of ceramic fibers with an active silica gel or an active metal silicate gel having both the moisture adsorptivity and the odor adsorptivity and bonding the gel to the honeycomb formed body.
The above rotor members are incombustible members composed of only inorganic materials and having a high heat resistance, and they function effectively as rotor members which are continuously regenerated by heating upon rotational driving. However, considering the application of them to domestic appliances, for some uses (for example, domestic deodorization or dehumidification), regeneration at high temperatures is not necessarily needed or regeneration systems at high temperatures can hardly be employed from the viewpoints of heat resistance of casings of appliance, saving of energy and safety, and for these reasons, such heat resistance and incombustibility as of inorganic type rotor members are not essential for the application to appliances. Rather, the following problems of the inorganic type rotor members are present and solution of them is demanded. (1) They are hard and brittle like pottery, and hence very weak against shock and readily broken; (2) Since high-temperature heat treatment such as firing is carried out for the removal or diminishment of organic components, there are possibilities of deterioration in adsorption characteristics of moisture adsorbents or adsorbing agents or restrictions in selection of raw materials; (3) Fixation strength of moisture adsorbents or adsorbents are insufficient in the case of using only inorganic materials, and exfoliation of them to some extent cannot be avoided; (4) It is difficult to control thickness of the substrate constituting the rotor members or to make thin the substrate, and it is difficult to control and decrease the pressure loss of the rotor members; and (5) Since the method of production is like production of ceramics, change of volume is apt to occur in rotor members at the time of high-temperature heat treatments such as firing to cause reduction in accuracy of size or breakage, resulting in reduction of yield, and thus they become expensive.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a heating regeneration type organic rotor member capable of efficiently adsorb and remove moisture and odor components which is a honeycomb structural body capable of being continuously regenerated by heating with rotational driving, and a method for producing the same.
As a result of intensive research conducted by the inventors in an attempt to solve the above problems, the following heating regeneration type organic rotor member and method for producing the same have been accomplished.
1. A heating regeneration type organic rotor member continuously regenerated by heating with rotational driving which is produced by forming a functional substrate into a honeycomb structural body, the functional substrate comprising a fiber substrate containing organic fibers as an essential component and carrying thereon a moisture adsorbent and an active carbon.
2. A heating regeneration type organic rotor member of the above 1, wherein the moisture adsorbent is at least one member selected from the group consisting of zeolite, silica gel, allophane and sepiolite.
3. A heating regeneration type organic rotor member of the above 1 or 2, wherein the organic fibers are heat resistant organic fibers.
4. A heating regeneration type organic rotor member of the above 3, wherein the heat resistant organic fibers are at least one member selected from the group consisting of wholly aromatic polyamide fibers, wholly aromatic polyester fibers and phenolic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heating regeneration type organic rotor member and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heating regeneration type organic rotor member and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heating regeneration type organic rotor member and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356329

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.