Dispensing – With heating or cooling means – Heating only
Reexamination Certificate
2001-06-06
2003-12-02
Derakshani, Philippe (Department: 3754)
Dispensing
With heating or cooling means
Heating only
Reexamination Certificate
active
06655552
ABSTRACT:
TECHNICAL FIELD
This invention relates to heating and dispensing fluid, such as shaving creams, gels, foams, oils and the like, in limited amounts.
BACKGROUND
Many fluid consumer products, such as shaving cream foams and gels, are packaged and sold in closed containers, such as pressurized cans, with manually operated dispensers for releasing a limited amount of the product for each use. Improvements in such dispensers are desired. Additionally, it is frequently useful to heat such products before they are applied to the skin, for improved comfort.
Pressurized products such as shaving gels, for example, can feel particularly cold against the skin as dispensed, owing to the cooling effect of the thermodynamic expansion of the gel from the can. After showering, the contact of this direct dispensed product can be perceived as even colder on the warmed skin. Some efforts have been made to heat shaving products as they are dispensed, such as by electric heater appliances. Others have employed hot tap water to heat the shaving products within the can before they are dispensed.
Many pressurized products contain propellants within the product itself. After a desired amount of product has been dispensed, some amount of unwanted ‘dribbling’ or ‘drooling’ from the nozzle may be experienced, due to subsequent expansion of product within the dispenser.
SUMMARY
The invention features an improved dispenser for fluid containers, with particular applicability to pressurized cans of products such as shaving creams, lotions, foams and gels.
According to one aspect of the invention, a pressurized can of flowable material has a body defining an interior volume containing the flowable material in a pressurized condition, a valve operable to dispense a selected amount of the flowable material from the can through an outlet at an exterior surface of the can, and, between the interior volume of the body and the valve, a heat transfer device. The heat transfer device includes an exterior housing defining an interior volume adapted to receive and hold a quantity of water at a temperature differing from that of the flowable material, and a conduit contained within the housing and forming a flow path for the flowable material between an outlet orifice of the interior volume and the valve. The conduit is adapted to contain a quantity of pressurized, flowable material as thermal energy is transferred through the conduit between the water and the contained quantity of flowable material, and the valve is disposed proximate the outlet and is adapted to prevent flow of pressurized material through the outlet when released.
Preferably, the can defines a released material flow path, between the valve and the outlet, having a volume of no more than 0.05 cubic centimeters (more preferably, no more than 0.02 cubic centimeters) for containing unpressurized material downstream of the valve.
In some embodiments, the can also includes an operable valve at the outlet orifice of the interior volume of the body, and an exposed surface adapted to operate both valves when manually manipulated.
The valve, in some preferred constructions, comprises a sliding face seal at an outlet surface of the conduit, preferably disposed less than about 0.050 inch (1.3 millimeters) from the exterior surface of the can.
The invention is particularly useful in applications in which the pressurized material contains a propellant, and in which the pressurized material expands upon being released through the valve. Examples of pressurized materials for which the invention is well suited include gels and shaving products.
For shaving applications, the conduit is preferably adapted to contain a quantity of flowable product sufficient for shaving a man's face.
For particularly advantageous thermal response, we recommend that the conduit have an effective thermal mass, in some cases, of less than about 8 Joules per degree Kelvin (preferably, less than about 6 Joules per degree Kelvin). It is also desirable that, in some instances, the conduit material have a thermal conductivity of at least 0.3 watts per meter-degree Kelvin.
The conduit may be made of plastic resin, for example, with a nominal wall thickness, between water in contact with an outer surface of the conduit and flowable material contained within the conduit, of preferably less than about 0.050 inch (1.3 millimeters), more preferably less than about 0.030 inch (0.76 millimeters). The conduit defines, in some cases, a spiral flow path for the flowable material.
In some embodiments, the conduit is adapted to contain at least {fraction (1/10)} fluid ounce (preferably, at least ⅙ fluid ounce, and more preferably, at least ⅓ fluid ounce) (at least 3 cubic centimeters, preferably at least 5 cubic centimeters, more preferably at least 10 cubic centimeters) of flowable material.
Preferably, the heat transfer device is constructed of materials selected to safely withstand filling the housing of the heat transfer device with water at about 140 degrees Fahrenheit, for heating the flowable material contained within the conduit. Preferred materials include, for example, polyethylene, polypropylene and polystyrene.
In some embodiments, the can has a valve actuator exposed for engagement by a human finger and adapted to be moved from a first position, in which the actuator is blocked from actuating the valve, to a second position, in which the actuator actuates the valve to dispense flowable material when depressed. The can may also have an operable valve at the outlet orifice of the interior volume of the body, with the actuator being blocked from actuating the valves in its first position, but actuates both valves when depressed in its second position.
Particularly for use as a shaving lubricant dispenser, the can ideally should be adapted to dispense at least four cubic centimeters of temperature-modified, flowable material, as measured volumetrically prior to any expansion, within less than about six seconds, upon valve actuation.
According to another aspect of the invention, a pressurized can of flowable material is provided for retail sale. The can includes a cylindrical body having an outer diameter and a length and defining an interior volume containing the flowable material in a pressurized condition, and, coupled to an upper end of the body, a heat transfer assembly having an overall height, measured from the upper end of the cylindrical body, of less than about 3 inches, and being substantially contained within an extended cylindrical volume defined by the outer diameter of the body. The heat transfer assembly has an exterior housing defining an interior volume adapted to receive and hold a quantity of water with the can in an upright position, the exterior housing containing a valve operable to dispense a selected amount of the flowable material from the can, and a conduit within the interior volume of the exterior housing for submersion in the quantity of water and forming a flow path for the flowable material through the heat transfer assembly. The conduit is adapted to contain at least three cubic centimeters of pressurized, flowable material as thermal energy is transferred through the conduit between the water and the contained quantity of flowable material.
The valve is preferably disposed proximate an outlet at an exterior surface of the can and is adapted to prevent flow of pressurized material through the outlet when released.
In many useful applications, the pressurized material contains a propellant and is formulated for application to skin.
According to another aspect of the invention, a heat transfer cap assembly is provided for use with a dispensing canister containing a pressurized shaving product. The cap assembly includes a rail mount disposed at a lower end of the cap assembly and constructed to clamp onto an upper edge of the dispensing canister, and an outer shell defining an interior volume configured to receive and hold a quantity of hot water. An actuator of the cap assembly is exposed for finger operation and arranged to depress a release nozzle o
Aiken Patrick T.
Hagerty Thomas A.
Hotaling Bryan R.
Rossman Jon R.
Aiken Industries Inc.
Derakshani Philippe
LandOfFree
Heating and dispensing fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heating and dispensing fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heating and dispensing fluids will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3110008