Heatable and/or coolable cylinder

Seal for a joint or juncture – Process of dynamic sealing – Relatively rotatable radially extending sealing face member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C277S355000, C034S124000

Reexamination Certificate

active

06227545

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority under 35 U.S.C. § 119 of German Patent Application No. 197 47 555.8, filed on Oct. 28, 1997, the disclosure of which is expressly incorporated by reference herein in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a heatable and/or coolable cylinder having a bearing axle pivotably mounted in a support and at least one stationary connection, the at least one stationary connection being coupled to the bearing axle for input and/or removal of at least one of heating and/or cooling medium through the at least one stationary connection and the bearing axle. A sealing device is provided between a rotating portion, e.g., a rotating cylinder body, the bearing axle, and/or at least one part rotating therewith, and a stationary portion, e.g., the support, the at least one stationary connection, and/or at least one other stationary part.
2. Discussion of the Background Information
In known cylinders, such as disclosed in, e.g., EP 0 499 597 B1 and DE 197 00 139 A1, sealing between a flange that is solidly coupled to the bearing axle and the stationary connection is provided by a piston ring with a carbon gasket that is mounted to be axially movable in the stationary connection and pressed against an annular sealing surface of the flange associated with the bearing axle. Pressure is generally applied by springs, and is reinforced by vapor pressure prevailing within the cylinder.
The temperature-associated allowances between the parts to be coupled to each other are compensated by such sealing.
However, due to the wear on the carbon seal that occurs during operation, it is essential that the condition of the seal be monitored. Consequently, seals such as these are generally only suitable for use between axially oriented sealing surfaces, i.e., sealing surfaces lying in a specific radial plane.
In addition to the relatively high axial forces acting on the bearing of the cylinder and the relatively fast wear, sealing arrangements in the prior art have the disadvantage of relatively expensive design.
Moreover, known radial sealing rings are inadequate or unusable due to the usual temperatures in dryer cylinders of paper or cardboard producing machines, e.g., between approximately 80 and 230° C.
SUMMARY OF THE INVENTION
The present invention provides a heatable and/or coolable cylinder of the type generally discussed above in which an essentially wear-resistant and reliable sealing is substantially ensured as simply as possible.
The present invention provides a sealing device that includes at least one brush seal positioned between a rotating sealing surface and a stationary sealing surface.
A brush seal may be composed of, e.g., a bundle of wires held together by a holder. The wires may, in particular, be made of metal, but may also be made of a different material. The holder may be positioned against one sealing surface, while the other sealing surface is coupled to the ends of the wires. The bundles of wires not only provide adequate sealing, they are more wear-resistant than carbon seals. Further, the bundle of wires is flexible so that it may, in particular, be installed under tension. In this manner, temperature-associated allowances between the sealing surfaces may be compensated for. Thus, additional arrangements to apply pressure are no longer necessary.
The sealing device may include at least one brush seal that is positioned between radially oriented sealing surfaces. Additionally, or alternatively, at least one brush seal may be positioned between axially oriented sealing surfaces.
Expediently, at least one annular brush seal that is particularly advantageous in light of the presence of a specific rotating sealing surface may be provided.
In an exemplary embodiment of the cylinder according to the present invention, the bearing axle has, in a region for conveying the heating and/or cooling medium, a cylindrical bore. A cylindrical pipe may be rotatably inserted within the cylindrical bore to rotate with the bearing axle. The cylindrical pipe may, preferably, serve as a protective pipe and be surrounded in an end region located outside of the bearing axle by the stationary connection.
In the exemplary embodiment, the brush seal may be located between an outer surface of the end region of the cylindrical pipe and the stationary connection. However, it is possible to position the brush seal between the stationary connection and a bushing rotating with the bearing axle and surrounding the end region of the cylindrical pipe.
If the brush seal is positioned directly between the outer surface of the end region of the cylindrical pipe and the stationary connection, a bushing, which rotates with the bearing axle and surrounds the end region of the cylindrical pipe, may advantageously be axially located between the brush seal and the adjacent end of the bearing axle.
Sealing may be simplified through the use of a cylindrical pipe having an end region that is surrounded by the stationary connection and that rotates with the bearing axle. Allowances between the sealing surfaces may be compensated by the flexible brush seal. Thus, no additional device is necessary to press the seal against a sealing surface.
The space between the bearing axle and the pipe rotating therewith may preferably be sealed relative to the outside by the specific bushing.
The sealing device includes at least one brush seal that may generally be provided between the rotating cylinder body, the bearing axle, and/or at least one part rotating therewith and the support, the connection, and/or at least one other stationary part. The sealing device may include at least one brush seal that is located between the bearing axle or a part rotating therewith and a stationary connection or a part solidly connected thereto. Here, a specific brush seal may be disposed between radially oriented sealing surfaces or between axially oriented sealing surfaces. In principle, a combination of such seals is also possible.
In an advantageous embodiment, at least one brush seal, which is prestressed when it is placed between the sealing surfaces, is provided.
In principle, it is also conceivable to provide, in addition to the at least one brush seal, at least one other (i.e., different) type of seal.
If steam is utilized as the heating medium, devices may preferably be provided to remove condensate appearing in the region of a specific brush seal.
It is particularly advantageous if at least one channel, utilized to input steam, runs through the cylindrical bore of the bearing axle. The channel may open into the interior of the cylinder and may run outwardly through the stationary connection.
Alternatively, or additionally, at least one stationary channel, utilized for the removal of water, steam, and/or condensate, may run through the cylindrical bore of the bearing axle. The channel may open into the interior of the cylinder and may run outwardly through the stationary connection.
In an advantageous practical embodiment of the cylinder according to the present invention, one of the two channels may be a stationary ring channel surrounding the other stationary channel. Thus, the channel utilized to input steam may be provided, e.g., as a stationary ring channel.
Accordingly, on at least one roller end, an appropriate stationary connection may be provided for both the input of steam and the removal of water, steam, and/or condensate.
In an advantageous alternative embodiment, only one channel for the input of steam may run through the cylindrical bore in the bearing axle positioned on one of the two ends of the roller. The channel may open into the interior of the cylinder and may run outwardly through the stationary connection.
It is also possible to position, preferably, only one stationary channel, e.g., for removal of water, steam, and/or condensate, through the cylindrical bore of the bearing axle positioned on one of the two ends of the roller. The stationary channel may also open into the interior of the cy

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heatable and/or coolable cylinder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heatable and/or coolable cylinder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heatable and/or coolable cylinder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2570934

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.