Power plants – Motor operated by expansion and/or contraction of a unit of... – Unit of mass is a gas which is heated or cooled in one of a...
Patent
1982-07-28
1983-11-08
Ostrager, Allen M.
Power plants
Motor operated by expansion and/or contraction of a unit of...
Unit of mass is a gas which is heated or cooled in one of a...
F02G 104
Patent
active
044134738
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
This invention relates to Stirling-cycle engines, also known as regenerative thermal machines, and more particularly to the materials chosen for the design and construction of heat transfer components and their adjuncts. The desire for high thermal efficiency in Stirling engines, as in all heat engines, dictates that all heat transfer components should have the highest practicable thermal conductivity while all other components should be thermal insulators having the lowest practicable thermal conductivity.
The crux of advanced Stirling-cycle engine design is the achievement of high rates of heat transfer to and from highly pressurized working fluid; fortunately, new highstrength thermally conductive structural materials have been developed. Successful design of thermally stressed machine elements, however, requires closely matched coefficients of thermal expansion in adjacent components. The present invention provides specific new solutions to these problems and will thereby enhance the performance of all machines which embody a practical approximation to the well-known Stirling thermodynamic cycle in the production of both mechanical power (i.e. prime movers, compressors, fluid pumps) and refrigeration (i.e. refrigerators, air conditioners, heat pumps, gas liquifiers).
A Stirling-cycle engine is a machine which operates on a closed regenerative thermodynamic cycle, with periodic compression and expansion of a gaseous working fluid at different temperature levels, and where the flow is controlled by volume changes in such a way as to produce a net conversion of heat to work, or vice-versa. The regenerator is a device which in prior art takes the form of a porous mass of metal in an insulated duct. This mass takes up heat from the working fluid during one part of the cycle, temporarily stores it within the machine until a later part of the cycle, and subsequently returns it to the working fluid prior to the start of the next cycle. Thus the regenerator may be thought of an an oscillatory thermodynamic sponge, alternately absorbing and releasing heat with complete reversibility and no loss.
A reversible process for a thermodynamic system is an ideal process, which once having taken place, can be reversed without causing a change in either the system or its surroundings. Regenerative processes are reversible in that they involve reversible heat transfer and storage; their importance derives from the fact that idealized reversible heat transfer is closely approximated by the regenerators of actual machines. Thus the Stirling engine is the only practical example of a reversible heat engine which can be operated either as a prime mover or as a heat pump.
BACKGROUND
The Stirling-cycle engine was first conceived and reduced to practice in Scotland 164 years ago. A hot-air, closed cycle prime mover based on the principle was patented by the Reverend Robert Stirling in 1817 as an alternative to the explosively dangerous steam engine. Incredibly, this event occurred early in the Age of Steam, long before the invention of the internal combustion engine and several years before the first formal exposition of the Laws of Thermodynamics.
Air was the first and only working fluid in early 19th century machines, whereas hydrogen and helium have been the preferred working fluids for modern machines. In Great Britain, Europe, and the United States thousands of regenerative hot air prime movers in a variety of shapes and sizes were widely used throughout the 19th centrury. The smaller engines were reliable, reasonably efficient for their time, and most important, safe compared with contemporary reciprocating steam engines. The larger engines were less reliable, however, because they tended to overheat and often succumbed unexpectedly to premature material failure.
Toward the end of the 19th century the electric motor and the internal combustion engine were developed and began to replace not only the Stirling-cycle engines, but also the reciprocating steam engines of that era. These new machines were prefer
REFERENCES:
patent: 2567637 (1951-09-01), Brey et al.
patent: 4174616 (1979-11-01), Nederlof et al.
Morton, Jr. W. Brown
Ostrager Allen M.
LandOfFree
Heat transfer components for Stirling-cycle, reciprocating therm does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat transfer components for Stirling-cycle, reciprocating therm, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat transfer components for Stirling-cycle, reciprocating therm will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2002218