Heat transfer catheter apparatus and method of making and...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06440158

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to heat transfer catheter apparatus for internal body applications, and more particularly, to catheters adapted for delivering heat transfer fluids at temperatures above or below normal body temperatures to selected internal body sites that are relatively remote from the point of entry into the body for specialized medical applications. The heat transfer catheters of this invention may, in one embodiment, comprise fluid lumens that have very thin-walled, high strength sidewalls that are substantially inelastic. In an alternative embodiment, the fluid lumen sidewalls may be elastomeric. In either case, the fluid lumens are readily inflatable under fluid pressure and readily collapsible under vacuum. The heat transfer catheter apparatus of this invention may comprise multi-lumen units having two or more lumens. The heat transfer catheter apparatus of this invention may also, in different embodiments, be used alone or in conjunction with other medical apparatus. The heat transfer catheter apparatus of this invention may also, in different embodiments, comprise single or multi-lumen dilatation balloons.
It is well known in the art to prepare and use catheters for a variety of medical applications. In one familiar application, inexpensive, disposable catheters having one open end and one closed end are utilized as protective sheaths for various medical instruments. The use of such elongated, tubular sleeves as protective sheaths can minimize the costs and problems associated with cleaning and sterilizing medical instruments, such as endoscopes, between uses. In the case of medical optical instruments, such as endoscopes, the protective sleeves may include a “window” portion designed to align during use with the optical portion of the medical instrument. `Typical of the prior art in this field are U.S. Pat. Nos. 4,646,722 (Silverstein et al.) and 4,907,395 (Opie et al.). The Silverstein et al. patent teaches the use of an endoscope sheath comprising a flexible tube surrounding the elongated core of an endoscope. The flexible tube has a transparent window near its distal end positioned in front of the viewing window of the endoscope. An alternative embodiment of the Silverstein et al. sheath for use with side-viewing endoscopes is shown in
FIG. 10
of that patent. In this embodiment, the sheath
110
comprises an end cap
112
of relatively rigid material mounted at the end of a flexible cylindrical tube of elastomeric material
114
formed into a roll
116
. The end cap
112
includes a pair of transparent windows
118
,
120
. The later Opie et al. patent is essentially an improvement invention directed to a method of packaging and installing the endoscope sheaths of the Silverstein et al. patent.
U.S. Pat. Nos. 3,794,091 (Ersek et al.) and 3,809,072 (Ersek et al.) are directed to sterile sheaths for enclosing surgical illuminating lamp structures that have elongated light transmitting shafts. The sheaths in Ersek et al. are fabricated from films of flexible plastic material, such as vinyl tubing, polyethylene or polypropylene. Ersek et al. prefer a wall thickness of between three and six mils for the required durability, rigidity and transparency. The tip end portion
20
of the sheath is described as a “generally rigid lens element” sealed to the sheath in a continuous sealing line
21
by thermal welding or adhesive bonding.
U.S. Pat. No. 4,957,112 (Yokoi et al.) describes an ultrasonic diagnostic apparatus, the distal end portion of which includes a cover
24
made of a thin, hard, polyethylene sheet that has a window portion
34
along a sidewall. U.S. Pat. No. 4,878,485 (Adair) describes a rigid, heat sterilizable sheath S that provides an outer casing for a video endoscope. The sheath includes a viewing window
32
, a flat disc positioned at the distal end in the optical path of the endoscope. U.S. Pat. No. 4,819,620 (Okutsu) describes an endoscope guide pipe which is rigid and formed from a transparent material such as glass or plastic. In one embodiment shown in
FIG. 6
of that patent, a pair of slots in the sidewall of the guide pipe is filled with a transparent material, such as glass, to define a window section
12
f
. U.S. Pat. No. 4,470,407 (Hussein) describes a flexible, elongated tube with an elastomeric balloon sealingly mounted at the distal end of the tube for enclosing an endoscope. Inside the body, the balloon can be inflated to facilitate endoscope viewing. U.S. Pat. No. 4,201,199 (Smith) describes a relatively thick, rigid glass or plastic tube
10
which fits over an endoscope. The distal end of the tube in the Smith patent is provided with an enlarged, sealed bulb
12
having a radius of at least
3
-
4
mm to reduce optical distortion caused by a too-small radius of curvature. U.S. Pat. No. 3,162,190 (Del Gizzo) describes a tube
19
, made from molded latex or similar material, through which an optical instrument is inserted. Viewing is through an inflatable balloon element
24
mounted at the distal end of the tube. U.S. Pat. No. 3,698,791 (Walchle et al.) describes a very thin, transparent microscope drape which includes a separately formed, optically transparent, distortion-free lens for viewing.
In another familiar application, multi-lumen balloon catheters are utilized as dilatation devices for dilating a blood vessel, e.g. a coronary artery, or other body canal. The use and construction of balloon catheters is well known in the medical art, as described for example in U.S. Pat. No. Re. 32,983 (Levy) and U.S. Pat. No. 4,820,349 (Saab). Other patents generally showing the application of various types of balloon catheters include U.S. Pat. No. 4,540,404 (Wolvek), U.S. Pat. No. 4,422,447 (Schiff), and U.S. Pat. No. 4,681,092 (Cho et al.).
It is also well known in the medical art to employ catheters having shafts formed with a plurality of lumens in instances where it is necessary or desirable to access the distal end of the catheter or a particular internal body location simultaneously through two or more physically separate passageways. For example, U.S. Pat. No. 4,576,772 (Carpenter) is directed to increasing the flexibility or articulatability of a catheter having a shaft formed with a plurality of lumens that provide distinct conduits for articulating wires, glass fiber bundles, irrigation, and vacuum means.
It is also known, as shown in U.S. Pat. No. 4,299,226 (Banka) and U.S. Pat. No. 4,869,263(Segal et al.), to employ multi-lumen catheters with a balloon. The Banka patent shows a double-lumen catheter shaft of coaxial construction wherein the outer lumen carries saline solution to inflate a balloon, and an inner lumen, located coaxially inside the outer lumen, is adapted to receive a stylet or guide wire. In the Banka patent, the double-lumen dilatation catheter is designed to be coaxially contained within the single lumen of a larger diameter guide catheter. In the Banka device, each of the three coaxial lumens is a separate, distinct passageway without any means for fluid passage between two of those lumens. Such fluid passage between lumens could occur only accidentally in the event of a rupture of one of the lumens, and such results are clearly contrary to the intent of that patent.
The Segal et al. patent shows a more complex dilatation catheter apparatus having five separate, non-coaxial lumens (FIGS. 1 and 2 of that patent) extending through the catheter, including a balloon inflation lumen 18, a distal lumen 17, a wire lumen 22, a pulmonary artery lumen 26, and a right ventricular lumen 28. Lumens 17 and 18 extend the entire length of the catheter from the proximal extremity to the distal extremity. Lumen 17 exists through the distal extremity 14b of the catheter. The distal extremity of lumen 18 is in communication with the interior of balloon 16 to permit inflation and deflation. Lumens 22, 26 and 28, on the other hand, only pass partly or completely through the larger diameter, proximal portion 14a of the catheter. The Segal et al. catheter apparatus is prepared by e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat transfer catheter apparatus and method of making and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat transfer catheter apparatus and method of making and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat transfer catheter apparatus and method of making and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.