Heat stable self-sealing tire liner

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C152S502000

Reexamination Certificate

active

06508898

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a self-sealing polyurethane liner for placement inside a pneumatic tire carcass just behind the tread to flat-proof the tire. More particularly, this invention relates to a composition that will not only flat-proof the tire but will withstand temperatures as high as about 290° F. for several hours, such that the tire can be retreaded without causing the liner to lose its usefulness.
BACKGROUND OF THE INVENTION
The pneumatic tire has proven its worth in providing a comfortable ride with load carrying capabilities for automobiles, trucks, aircraft, and other vehicles. However, the tire carcass is susceptible to punctures which cause the tire to go flat, rendering it unusable. A tire suddenly going flat can be life threatening as well as inconvenient and cause financial loss in industrial applications.
Very soft polyurethane elastomer-filled, deflation-proof pneumatic tires were developed beginning in the 1970's to reduce the downtime caused by flats in many industrial applications. A few of the prior art references in this field include: Gomberg, U.S. Pat. Re. 29,890; Wyman, U.S. Pat. No. 4,416,844; Wyman, U.S. Pat. No. 4,683,929; Ford, U.S. Pat. No. 4,094,353; Kaneda et al., U.S. Pat. No. 4,230,168; Bulluck, U.S. Pat. No. 5,070,138; and Gupta, U.S. Pat. No. 5,402,839.
Although the polyurethane filling materials give a harder ride than air, and add, in some cases, tremendous weight to the vehicle, the availability of deflation-proof tires is economically practical for many applications, such as mining, scrap yards, military, and heavy construction.
Since air is negligible in weight and essentially free, the raw materials used in the compositions to fill the tires and to create the extra weight have to be inexpensive to make deflation-proof tires practical.
Besides filling the tire completely, it has been found that flat-proofing can be accomplished with much less material using a very soft self-sealing elastomer as a liner adhering to the inside of the tire carcass just behind the tread. Some prior art references to these materials and application of these materials to the tire carcass include: Pace, U.S. Pat. No. 3,628,585; Miyazato, U.S. Pat. No. 3,881,537; Farber et al., U.S. Pat. No. 3,981,342; Davis et al., U.S. Pat. No. 4,396,053; Casey, U.S. Pat. No. 4,398,492; Soeda et al., U.S. Pat. No. 4,262,624; Baboffet al., U.S. Pat. No. 4,115,172; Austin, U.S. Pat. No. 5,472,031; Gomberg et al., U.S. Pat. No. 4,418,093; Gomberg, U.S. Pat. No. 5,099,900; and Gomberg et al., U.S. Pat. No. 5,110,629.
Specifically, the '629 patent discloses a method for preparing the inner surface of a pneumatic tire for adhesion of a self-sealing tire liner. The composition of the liner is any polyurethane elastomeric material known in the art. Specifically, the method comprises coating the rubber surface with a polyamine, a peroxide solution and a polyisocyanate, and then a prior art uncured liquid or paste urethane formulation is applied to the polyisocyanate coating and allowed to cure. The bond strength of the urethane formulation to the rubber, even at elevated temperatures, e.g., up to 293° F., is said to be improved by such a method. There is no teaching in this patent on the effect such a temperature has on the polyurethane elastomeric liner.
The '053 patent from the above list is directed to a curable storage-stable sealant composition for pneumatic tires containing a liquid low molecular weight hydroxy terminated polybutadiene diol, an antioxidant, a polymeric isocyanate, a tackifier or plasticizer and a catalyst. The plasticizer is included in the composition in amounts in the range of 1 to 10 weight % and is, for example, a thermoplastic hydrogenated rosin ester such as Foral 85.
The tire liner elastomer has to be liquid as it is centrifugally cast in a rotating tire, and then set to a very soft, tacky rubber capable of sealing any hole poked or cut into it. To be economically practical, the tire liner material must be easy to process and set up in a short period of time, yet not too fast, to allow a uniform layer of liner to cover the inside of the tire. The liner must adhere well to the inner carcass of the tire and be stable to creep and flow under any conditions the tire may endure. Since under normal driving conditions the temperatures in the tire can reach 200° F., most liner systems used today are required to withstand this heat for several hours and maintain their integrity. However, some tires in industrial applications, for economical savings, are retreaded. The retreading process requires temperatures up to 285° F. for several hours. Thus, for the liner to be used in tires that will be retreaded, the liner will have to withstand this high temperature cycle without degradation which will result in material flow. The prior art materials being used today will withstand the 200° F., but not the 285° F. heat cycle. Very soft polyurethane elastomers of the prior art will flow at 285° F. in a short time period. There is long felt need for a self-sealing tire liner that will not flow at temperatures of about 290° F.
SUMMARY OF THE INVENTION
The present invention provides a very soft polyurethane composition which includes low levels of a phosphorous-containing plasticizer. The composition of the present invention will perform well as a self-sealing liner to flat-proof pneumatic tires, and will withstand the high temperatures of the tire retread process and still be functional. The liner is prepared by meter-mixing a two component system in the presence of a catalyst and poured directly into the tire to be lined as it is being rotated to spread the material uniformly in the tire until the mixture cures, i.e., sets up so that it will not cold flow. Also, the meter-mixed liner material can be poured on a flat surface of release paper to form sheet stock that can be cut into strips of suitable width and thickness and then applied to the inner lining of the tire by suitable means at a later time.
The composition of the present invention comprises from about 4 to about 15 parts by weight of an isocyanate; from about 10 to 30 parts by weight of a plasticizer blend of which about 4 to about 20 parts by weight of a phosphorous-containing plasticizer including aromatic phosphates, aliphatic phosphonates, and mixtures thereof; and an amount to bring the amount of high molecular weight polyols or blend of polyols, as described in more detail below, to bring the total amount of cured mixture to 100 parts by weight. Parts by weight as used herein is based on a total of 100 parts of the cured mixture of the present invention.
The soft polyurethane elastomer composition of this invention can be formulated to provide a two component system of an isocyanate component and a polyol component that can be meter-mixed at a 1:1 volume ratio at room temperature to produce a mixture that will flow easily with gravity and centrifugal forces for a short period to level and then gel and set up in less than 15 minutes to form an elastomer that will not cold flow. To insure that the liner adheres to the inner lining of the tire, the inner surface of the tire is wiped clean with a cleaning solvent, dried, and coated with an appropriate primer. After a short curing period in the presence of a catalyst, the liner composition containing the aromatic phosphates or phosphonates will be non-flowing, self-sealing to prevent punctures from causing air loss of the tire and will not degrade in utility at temperatures as high as about 290° F. for a number of hours.
DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
In order for a tire liner flat-proofing system to be economically practical, it has to be inexpensive as well as perform under severe service conditions. Though the liner approach requires much less material to flat-proof a tire than a standard tire filling system, which fills the entire tire, it is still important that the raw materials be inexpensive and the process for putting the system into the tires be very simple and inexpensive. Thi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat stable self-sealing tire liner does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat stable self-sealing tire liner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat stable self-sealing tire liner will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3033809

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.