Heat sink for a voice coil motor

Dynamic magnetic information storage or retrieval – Head mounting – For shifting head between tracks

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S264700, C360S097020

Reexamination Certificate

active

06181530

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of disc drive devices, and more particularly but without limitation, to a heat sink for a disc drive voice coil motor to improve the operational performance of the disc drive.
BACKGROUND OF THE INVENTION
Modern hard disc drives comprise one or more rigid discs that are coated with a magnetizable medium and mounted on the hub of a spindle motor for rotation at a constant high speed. Information is stored on the discs in a plurality of concentric circular tracks by an array of transducers (“heads”) mounted to a controllably positionable actuator for radial movement relative to the discs.
Typically, such radial actuators employ a voice coil motor to position the heads with respect to the disc surfaces. The heads are mounted via flexures at the ends of a plurality of arms which project outward from an actuator body. The actuator body pivots about a cartridge bearing assembly mounted to the disc drive housing at a position closely adjacent the outer extreme of the discs so that the heads move in a plane parallel with the surfaces of the discs.
The voice coil motor includes a coil mounted radially outward from the cartridge bearing assembly, the coil being immersed in the magnetic field of a magnetic circuit of the voice coil motor. The magnetic circuit comprises one or more permanent magnets and magnetically permeable pole pieces. When current is passed through the coil, an electromagnetic field is established which interacts with the magnetic field of the magnetic circuit so that the coil moves in accordance with the well-known Lorentz relationship. As the coil moves, the actuator body pivots about the pivot shaft and the heads move across the disc surfaces.
A closed loop digital servo system such as disclosed in U.S. Pat. No. 5,262,907 issued Nov. 16, 1993 to Duffy et al., assigned to the assignee of the present invention, is typically utilized to maintain the position of the heads with respect to the tracks. Such a servo system obtains head position information from servo blocks written to the tracks during disc drive manufacturing to maintain a selected head over an associated track during a track following mode of operation. A seek mode of operation, which comprises the initial acceleration of a head away from an initial track and the subsequent deceleration of the head towards a destination track, is also controlled by the servo system. Such seek operations are typically velocity controlled, in that the velocity of the head is repetitively measured and compared to a velocity profile, with the current applied to the coil being generally proportional to the difference between the actual and profile velocities as the head is moved toward the destination track.
A continuing trend in the industry is to provide disc drives with ever increasing data storage and transfer capabilities, which in turn has led to efforts to minimize the overall time required to perform a disc drive seek operation. A typical seek operation includes an initial overhead time during which the disc drive services its own internal operations, a seek time during which the head is moved to and settled on the destination track, and a latency time during which the drive waits until a particular sector on the destination track reaches the head as the discs rotate relative to the heads.
Seek times have typically been minimized through the application of relatively large amounts of current to the coil during the acceleration and deceleration phases of a seek operation. One way of reducing seek time is to increase the relative amount of current to the electric coil. However, as the current is increased the operating temperature of the coil likewise increases, as a proportionate amount of the electrical energy is dissipated as heat energy. One skilled in the art will understand that the amount of current that can be passed through a coil is generally a function of its electrical resistance, which is directly affected by the temperature of the coil. As the temperature of the coil increases, the resistance of the coil increases, and the magnitude of the control current is limited, thereby adversely affecting the drive seek time. Moreover, elevated coil temperatures can also adversely affect the seek time performance by generally weakening the strength of the magnetic circuit of the magnet assembly.
Additionally, elevated voice coil motor temperatures can result in the degradation of adhesive and insulative materials used in the construction of the voice coil motor. Such degradation can lead to internal contamination of the disc drive as well as to the shorting of the coil.
Efforts have been made to reduce such temperature increases by using external means to cool the voice coil motor. For example, U.S. Pat. No. 5,517,372 issued May 14, 1996 to Shibuya et al., discloses a means for diverting the air flowing over the discs to flow over the voice coil motor. However, such cooling efforts increase power consumption by creating increased drag upon the discs. Such methods in essence add to the complexity of the drive through the addition of extraneous items such as ducts or diverters.
There is a continuing need in the industry for an improved actuator assembly with enhanced heat dissipation to facilitate cooling of the actuator coil without hindering the overall performance of the disc drive.
SUMMARY OF THE INVENTION
The present invention provides a heat sink for reducing the temperature of a voice coil motor during disc drive operation. Generally, in accordance with the preferred embodiments of the present invention, an improved heat sink is disposed within an aperture of an actuator coil to dissipate heat that accumulates therein.
In accordance with a first preferred embodiment, a bobbin formed from a thermally conductive, dielectric material serves as a heat sink for an actuator coil and facilitates the dissipation of heat that is generated in response to the application of current to the actuator coil, thereby reducing the operational temperature of the coil. Fins arranged in a substantially parallel formation on the bobbin provide increased surface area within the actuator coil to enhance heat dissipation thereof.
During operation, the bobbin conducts heat that accumulates at the actuator coil, thereby providing continuous cooling for the actuator coil. By cooling the actuator coil during operation, the electrical resistance is effectively reduced, thereby allowing a larger control current to be applied to the actuator coil to increase the speed of seek performance. The thermal conductivity of the material of the bobbin enhances heat dissipation while the dielectric nature of the bobbin prevents the formation of detrimental eddy currents around the actuator coil that can impede smooth current flow.
Reducing the operating temperature of the voice coil motor also lessens the temperature degradation of the magnetic circuit strength. Other advantages and features of the present invention will be apparent from the following description when read in conjunction with the drawings and appended claims.


REFERENCES:
patent: 4775908 (1988-10-01), Ycas
patent: 5247410 (1993-09-01), Ebihara et al.
patent: 5262907 (1993-11-01), Duffy et al.
patent: 5404258 (1995-04-01), Arin et al.
patent: 5517372 (1996-05-01), Shibuya et al.
patent: 5585981 (1996-12-01), Lee
patent: 5621591 (1997-04-01), Rahimi et al.
patent: 5666052 (1997-09-01), Sata
patent: 5673013 (1997-09-01), Moody et al.
patent: 5768050 (1998-06-01), Cho
patent: 5894524 (1999-04-01), Kotsatos et al.
patent: 5985684 (1999-11-01), Marshall et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat sink for a voice coil motor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat sink for a voice coil motor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat sink for a voice coil motor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2520896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.