Heat shrinkable barrier bags with anti block additives

Stock material or miscellaneous articles – Hollow or container type article – Shrinkable or shrunk

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S035400, C428S036600, C428S036700, C428S516000, C428S518000, C428S520000

Reexamination Certificate

active

06531198

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a five layer heat shrinkable barrier bag wherein an antiblock additive may independently be present in layers 1, 2, 4 and 5. These heat shrinkable film structures are useful in packaging meats.
Polymeric materials have many applications in packaging structures. They are used as films, sheets, lidstock, pouches, tubes and bags. These polymeric materials may be employed as a single layer or one or more layers in a structure. Unfortunately, there are countless polymeric materials available. Furthermore, resin suppliers frequently have a tendency to claim many more applications for a product than the product is actually suitable for. In addition, in view of the specialized applications and processing problems that are encountered despite the suppliers claims, one skilled in the art can not tell whether a particular resin will be suitable for an application unless tested. However, for various reasons there are frequently drawbacks to the use of many of these polymeric materials. For example, ethylene vinyl alcohol is an excellent oxygen barrier material for use in packaging food products. However, this polymeric material can be affected by moisture that is present in the atmosphere or the packaged product. As a result, it is frequently found that some polymeric materials are better for certain applications than others.
One area where there is a need for suitable resins in film applications is in the area of heat shrinkable films. Heat shrinkable polymeric films are commonly used in packaging meats, particularly primal meat cuts and other large pieces of meat. While this description will detail the usage of films for packaging meat and meat by-products, it will be understood that these films are also suitable for packaging a myriad of other products, both including food products and non-food products.
Some of the films embodying the present invention are intended to be used by meat packers in the form of heat shrinkable bags with one opened end, which bags are closed and sealed after insertion of the meat. After the product is inserted, air is usually evacuated from the package and the open end of the bag is closed. Suitable methods of closing the bag include heat sealing, metal clips, adhesives etc. Heat is applied to the bag once sealing is completed to initiate shrinkage of the bag about the meat.
In subsequent processing of the meat, the bag may be opened and the meat removed for further cutting of the meat into user cuts, for example, for retail cuts or for institutional use.
Suitable shrink bags must satisfy a number of criteria. Many bag users seek a bag that is capable of surviving the physical process of filling, evacuating, sealing and heat shrinking. For example, during the shrinking process great stress can be placed on the film by the sharp edges of bone in the meat. The bag must also have sufficient strength to survive the material handling involved in moving the large cuts of meat, which may weigh fifty pounds or more, along the distribution system.
Because many food products including meat deteriorate in the presence of oxygen and/or water, it is desirable that the bags have a barrier to prevent the infusion of deleterious gases and/or the loss or addition of moisture.
Conventional packaging for many products has frequently been made of multiple layer films having at least three layers. These multiple layer films are usually provided with at least one core layer of either an oxygen barrier material such as a vinylidene chloride copolymer, ethylene vinyl alcohol, a nylon or a metal foil preferably aluminum. Heat shrinkable meat bags, for example, have generally used vinylidene chloride copolymers. The copolymer of the vinylidene chloride may, for example, be a copolymer with vinyl chloride or methyl acrylate. Collapsible dispensing tubes have generally used one or more foil layers. The foil layers in addition to supplying an oxygen barrier also provide the dispensing tube with “deadfold”, i.e., the property of a collapsible dispensing tube when squeezed to remain in the squeezed position without bouncing back.
Outer layers of films used in packaging food products can be any suitable polymeric material such as linear low density polyethylene, low density polyethylene, ionomers including sodium and zinc ionomers, such as Surlyn®. In conventional shrink bags, the outer layers are generally linear low density polyethylene or blends thereof. Suitable outer layers for meat bags are taught by U.S. Pat. No. 4,457,960 to Newsome, the disclosures of which are incorporated herein by reference.
U.S. Pat. No. 4,894,107 to Tse et al. commonly assigned to American National Can discloses novel films and processes for making them. The films are characterized by having first and second layers whose compositions have a significant fraction of ethylene vinyl acetate (EVA). A third layer of vinylidene chloride copolymer (VDC-CP) is disposed between the first and second layers. The composition of at least one of the first and second layers is a blend of 10% by weight to 90% by weight linear low density polyethylene (LLDPE) and 90% to 10% EVA. These polymeric films are useful as heat shrinkable polymeric films. The film may be unoriented or oriented. Oriented films may be optionally cross-linked.
While conventional films have been suitable for many applications, it has been found that there is a need for films that are stronger and more easily processed than conventional films. In meat bags, there is a need for films and bags that have superior toughness and sealability and the ability to undergo cross-linking without undue deterioration. Thus, it is an object of the present invention to provide improved structures, including single and multi-layer films, sheets, lidstock, pouches, tubes and bags. In particular, structures for use in shrink bags wherein the shrink bags are capable of withstanding production stresses and the shrink process.
SUMMARY OF THE INVENTION
The structures of the present invention may be single or multilayer films, sheets, lidstock, pouches, containers, tubes and bags where at least one layer contains a polymer, usually a copolymer, formed by a polymerization reaction in the presence of a single site catalyst such as a metallocene. Examples of such a polymer are ethylene and propylene polymers and copolymers thereof. One preferred copolymer is a copolymer of ethylene and an alpha olefin where such alpha olefin has a carbon chain length of from C
3
-C
20
. The structures of the present invention may also include blends of polymers and copolymers formed by a polymerization reaction with a single site catalyst or blends of a polymer and copolymer formed by a polymerization reaction with a single site catalyst and another polymeric material. Examples of suitable polymers for blending include: high and medium density polyethylene (HDPE, MDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), ethylene vinyl acetate (EVA), ultra low density polyethylene (ULDPE or very low density polyethylene VLDPE), and ionomers such as Surlyn®. Polymers made from single site catalyst, preferably metallocene catalysts, provide increased strength, particularly seal, burst, impact and puncture as well as improved optics and faster bag making/sealing speeds.
The present invention may also be a multilayer structure of at least three layers wherein the core layer is a barrier layer. In one embodiment of the present invention, there may be a first outer layer of an ethylene or propylene polymer or copolymer formed by a polymerization reaction in the presence of a single site catalyst, a barrier layer and a second outer layer of a polymeric material. The second outer layer may be an ethylene or propylene polymer or copolymer formed by a polymerization reaction in the presence of a single site catalyst or a layer of another polymeric material such as high density polyethylene, medium density polyethylene, linear low density polyethylene, ultra low density polyethylene, low density polyethylene, ethylene vinyl ace

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat shrinkable barrier bags with anti block additives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat shrinkable barrier bags with anti block additives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat shrinkable barrier bags with anti block additives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3058780

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.