Radiation imagery chemistry: process – composition – or product th – Diazo reproduction – process – composition – or product – Composition or product which contains radiation sensitive...
Reexamination Certificate
1999-03-29
2001-04-10
Le, Hoa Van (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Diazo reproduction, process, composition, or product
Composition or product which contains radiation sensitive...
C430S164000, C430S302000
Reexamination Certificate
active
06214515
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a heat sensitive imaging element. More specifically the invention is related to a heat sensitive imaging imaging element for preparing a lithographic printing plate which can be imaged on the press.
BACKGROUND OF THE INVENTION
Lithography is the process of printing from specially prepared surfaces, some areas of which are capable of accepting lithographic ink, whereas other areas, when moistened with water, will not accept the ink. The areas which accept ink define the printing image areas and the ink-rejecting areas define the background areas.
In the art of photolithography, a photographic material is made imagewise receptive to oily or greasy inks in the photo-exposed (negative-working) or in the non-exposed areas (positive-working) on a hydrophilic background.
In the production of common lithographic printing plates, also called surface litho plates or planographic printing plates, a support that has affinity to water or obtains such affinity by chemical treatment is coated with a thin layer of a photosensitive composition. Coatings for that purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic photopolymers. Particularly diazo-sensitized systems are widely used.
Upon imagewise exposure of the light-sensitive layer the exposed image areas become insoluble and the unexposed areas remain soluble. The plate is then developed with a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
Alternatively, printing plates are known that include a photosensitive coating that upon image-wise exposure is rendered soluble at the exposed areas. Subsequent development then removes the exposed areas. A typical example of such photosensitive coating is a quinone-diazide based coating.
Typically, the above described photographic materials from which the printing plates are made are exposed in contact through a photographic film that contains the image that is to be reproduced in a lithographic printing process. Such method of working is cumbersome and labor intensive. However, on the other hand, the printing plates thus obtained are of superior lithographic quality.
Attempts have thus been made to eliminate the need for a photographic film in the above process and in particular to obtain a printing plate directly from computer data representing the image to be reproduced. However the above mentioned photosensitive coatings are not sensitive enough to be directly exposed to a laser. Therefor it has been proposed to coat a silver halide layer on top of the photosensitive coating. The silver halide can then directly be exposed by means of a laser under the control of a computer. Subsequently, the silver halide layer is developed leaving a silver image on top of the photosensitive coating. That silver image then serves as a mask in an overall exposure of the photosensitive coating. After the overall exposure the silver image is removed and the photosensitive coating is developed. Such method is disclosed in for example JP-A-60-61 752 but has the disadvantage that a complex development and associated developing liquids are needed.
GB-1 492 070 discloses a method wherein a metal layer or a layer containing carbon black is provided on a photosensitive coating. This metal layer is then ablated by means of a laser so that an image mask on the photosensitive layer is obtained. The photosensitive layer is then overall exposed by UV-light through the image mask. After removal of the image mask, the photosensitive layer is developed to obtain a printing plate. This method however still has the disadvantage that the image mask has to be removed prior to development of the photosensitive layer by a cumbersome processing.
Furthermore methods are known for making printing plates involving the use of imaging elements that are heat-sensitive rather than photosensitive. A particular disadvantage of photosensitive imaging elements such as described above for making a printing plate is that they have to be shielded from the light. Furthermore they have a problem of sensitivity in view of the storage stability and they show a lower dot crispness. The trend towards heat mode printing plate precursors is clearly seen on the market.
EP-A-444 786, JP-63-208036,and JP-63-274592 disclose photopolymer resists that are sensitized to the near IR. So far, none has proved commercially viable and all require wet development to wash off the unexposed regions. EP-A-514 145 describes a laser addressed plate in which heat generated by the laser exposure causes particles in the plate coating to melt and coalescence and hence change their solubility characteristics. Once again, wet development is required.
A somewhat different approach is disclosed in U.S. Pat. No. 3,787,210, U.S. Pat. No. 3,962,513, EP-A-001 068 and JP-04-140191. Heat generated by laser exposure of a donor sheet is used to physically transfer a resinous material from the donor to a receptor held in intimate contact with the donor. Provided the receptor surface has suitable hydrophilic properties, it can then be used as a printing plate. This method has the advantage of not requiring wet processing, but in order to achieve realistic write-times, a high power YAG (or similar) laser is required, which has restricted the usefulness of the method
On the other hand polymer coatings which undergo a change in surface properties in response to light exposure are known in the art. WO-92/09934 discloses imaging elements including coatings that become hydrophiliic as a result of irradiation. The coatings comprise an acid-sensitive polymer and a photochemical source of strong acid, and in both cases the preferred acid-sensitive polymer is derived from a cyclic acetal ester of acrylic or methacrylic acid, such as tetrahydropyranyl (meth)acrylate.
WO-92/02855 discloses that the acid-sensitive polymer is blended with a low-Tg polymer to produce a coating that is initially non-tacky, but on irradiation undergoes phase separation as a result of chemical conversion of the acid-sensitive polymer, and becomes tacky. Although the possibility of laser exposure is mentioned, no details are given, and there is no disclosure of IR-sensitivity, only UV/visible. However the same materials were the subject of a paper entitled “Advances in Phototackification” presented as Paper 1912-36 at the 1993 IS & T/SPIE Conference, Symposium on Electronic Science and Technology, in which it was further disclosed that the photoacid generator could be replaced by an IR dye (specifically a squarilium dye with thiopyrylium end groups) and exposure effected with a diode laser device. The dye in question is not known to have acid-generating properties. This technology is the subject of U.S. Pat. No. 5,286,604.
WO-92/09934 discloses that an acid-sensitive polymer is optionally blended with one or more photoacid generators. Subsequent to imagewise exposure to UV/visible radiation, the exposed areas are preferentially wettable by water, and the coatings may function as lithographic printing plates requiring no wet processing. There is no disclosure of laser adress.
WO-92/2855 discloses that the acid-sensitive polymer is blended with a low Tg polymer to produce a coating that is initially non-tacky, but on irradiation undergoes phase separation as a result of chemical conversion of the acid-sensitive polymer, and becomes tacky. Although the possibility of laser exposure is mentioned, no details are given, and there is no disclosure of IR-sensitization, only UV/visible. However the same materials were the subject of a paper entitled “Advances in Phototackification” presented as Paper 1912-36 at the 1993 IS§T/SPIE Conference, Symposium on Electronic Science and Technology, in which it was further disclosed that the photoacid generator could be replaced by an IR dye(specifically a squarylium dye with thiopyrilium end groups) and exposure effected with a diode laser device. The dye in question is not known to have acid-generating propert
Aert Huub Van
Damme Marc Van
Vermeersch Joan
AGFA-GEVAERT
Breiner & Breiner
Gilmore Barbara
Le Hoa Van
LandOfFree
Heat sensitive imaging element for providing a lithographic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat sensitive imaging element for providing a lithographic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat sensitive imaging element for providing a lithographic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2443345