Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Adhesive outermost layer
Reexamination Certificate
2003-01-03
2004-02-24
Jones, Deborah (Department: 1775)
Stock material or miscellaneous articles
Web or sheet containing structurally defined element or...
Adhesive outermost layer
C428S346000, C428S347000, C428S353000, C428S3550RA, C428S913000
Reexamination Certificate
active
06696150
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a heat-sensitive adhesive material which is non-adhesive at ambient temperature but becomes and remains adhesive upon and after being thermally activated.
Adhesive sheets and labels have been used for various applications such as for indication of price, bar codes, quality and amount of goods and for advertisement (stickers). An adhesive sheet or label generally is Composed of a substrate having one side provided with an information indicating layer and the other side on which an adhesive layer and a backing paper are laminated in this order. Information is recorded on the information indicating layer by various methods such as ink jet recording, heat-sensitive recording and pressure-sensitive recording. After recording, the backing paper is peeled away from the sheet or label and the exposed adhesive layer is bonded to a material to be bonded.
The above adhesive sheet has a problem in saving of resources because the backing paper is discarded without being recycled. Further, the adhesive sheet after the release of the backing paper poses a difficulty in handling because of the tackiness of the adhesive layer. Thus, the adhesive layer is apt to be adhered to an unwanted surface to cause curl, wrinkle or breakage thereof.
To cope with the above problems, there has been proposed a liner-free adhesive material (heat-sensitive adhesive material) which includes a substrate, an information indicating layer provided on one side of the substrate and a heat-sensitive adhesive layer provided on the other side of the substrate. The heat-sensitive adhesive layer is non-adhesive at ambient temperature but is capable of exhibiting adhesiveness when heated. The adhesive layer is composed of a thermoplastic resin, a plasticizer and, optionally, an additive such as a tackiness improver and is generally formed by applying a coating liquid containing these ingredients on the substrate.
The heat-sensitive adhesive layer does not at all show tackiness at room temperature. When thermally activated, however, the adhesive layer becomes adhesive. Such adhesiveness remains for a certain period of time even when the heat is removed therefrom. Although not yet fully clarified, the mechanism of the development of adhesiveness is considered to be such that, when the heat-sensitive adhesive material is heated, the plasticizer, when it is solid, is melted into an oily state and penetrates between the molecules of the thermoplastic resin. When a liquid plasticizer is, it is confined within microcapsules. In such a case, shells of the microcapsules are thermally destroyed, when the heat-sensitive adhesive material is heated, so that the plasticizer can plasticize the thermoplastic resin.
Because of freedom of the covering paper, the heat-sensitive adhesive material is advantageous from the standpoint of saving of resources and protection of environment. In addition, the adhesive material when bonded to an unwanted surface permits release from the surface by mere heating. Thus, the heat-sensitive adhesive material is now attractive in various fields.
Known heat-sensitive adhesive materials have a serious problem that the adhesiveness and the anti-blocking properties are still below a level required in the market. With regard to adhesiveness, the following problem exists. Hitherto, since polyvinyl chloride films have been used for wrapping foods, backing paper-bearing adhesive labels developed for POS (point of sales) system have been those suited for bonding to polyvinyl chloride films. Because of problems of dioxins, polyolefin films are now being substituted for polyvinyl chloride films. However, the existing backing paper-bearing adhesive labels have a problem that they fail to show sufficient adhesion strength to a polyolefin film. In particular, the adhesive layer is poor in bonding to and compatibility with a polyolefin resin film and is easily delaminated therefrom. While a lot of proposals have been made to overcome the problem, no satisfactory solution has been made. This also applies to liner-free adhesive material or heat-sensitive adhesive material.
Currently, there is a demand for a heat-sensitive adhesive material which exhibits satisfactory adhesiveness at low temperatures and which is suitably adhered to packages of raw meat, raw fish and other foods requiring storage in low temperature environment. In particular, such a heat-sensitive adhesive material is desired to be suitably adhered to cold bodies even when used in a cold environment. Moreover, for use in POS system, the heat-sensitive adhesive material is also desired to be suitably adhered to hot bodies. Thus, there is a demand for a heat-sensitive adhesive material which can exhibits high adhesion strength in a wide temperature range and yet can keep the adhesiveness for a long time. Known heat-sensitive adhesive materials are unsatisfactory in this respect.
With regard to anti-blocking property, the following problems exist. Blocking is a phenomenon of undesirable occurrence of tackiness when a heat-sensitive adhesive material is exposed to a temperature higher than room temperature for a long period of time. In general, a heat-sensitive adhesive material is an elongated sheet wound around a mandrel into a roll or cut stacked labels. Thus, when blocking occurs, the heat-sensitive adhesive layer adheres to its adjacent information indicating layer, so that the heat-sensitive adhesive material is no longer usable. When blocking occurs in a heat-sensitive adhesive material mounted on a recording device, the material cannot smoothly run through the device. When an image is recorded on-the information indicating layer, blocking may cause erasure of the recorded information.
A variety of proposals have been made for the purpose of preventing blocking problems. Published Examined Japanese Patent Application No. S62-21835 proposes addition of a wax having slipping property to a heat-sensitive adhesive layer. Published Unexamined Japanese Patent Application No. H02-282050 suggests incorporation of an inorganic material into a heat-sensitive adhesive layer. Published Unexamined Japanese Patent Applications No. H06-57223, No. H06-100847 and No. H06-10848 propose protecting surfaces of solid plasticizer with an inorganic compound or collide particles for the prevention of softening thereof.
The incorporation of a wax is, however, insufficient to prevent blocking. Rather, the adhesion strength of the heat-sensitive adhesive layer upon thermal activation is lowered. The addition of an inorganic material is also insufficient to prevent blocking. A solid plasticizer whose surface has been protected by an inorganic compound or colloid particles causes problems because melting and diffusing of the plasticizer are slow so that the adhesiveness is not quickly developed during thermal activation or the adhesion strength of the heat-activated adhesive layer is lowered. Blocking could be prevented when a plasticizer having a high melting point is used.
In this case, however, adhesion strength is considerably lowered. Thus, the conventional measures for improving anti-blocking properties are not satisfactory. Currently adopted is a method in which heat-sensitive adhesive materials are stored and transported while being maintained in a cold environment.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a heat-sensitive adhesive material which, upon being thermally activated, can be suitably adhered not only to a low temperature surface but also to a high temperature surface and which can exhibit satisfactory adhesiveness not only in a low temperature environment but also in a high temperature environment.
Another object of the present invention is to provide a heat-sensitive adhesive material which has good anti-blocking property even when exposed to a relatively high temperature.
In accordance with the present invention there is provided a heat-sensitive adhesive material comprising a substrate and a heat-sensitive adhesive layer provided thereon and comprising a therm
Ikeda Toshiaki
Kugo Tomoyuki
Bahta Abraham
Cooper & Dunham LLP
Ricoh & Company, Ltd.
LandOfFree
Heat-sensitive adhesive material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat-sensitive adhesive material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat-sensitive adhesive material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3311101