Heat reflective, erosion and wear resistant coating mixture,...

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Including a second component containing structurally defined...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S447000, C428S472000, C428S702000, C106S816000, C106S287160, C106S287170, C427S427000, C427S376400, C427S397700

Reexamination Certificate

active

06177186

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to high temperature, non-metallic, heat reflecting coatings, and, more particularly, to a fluid, air sprayable, heat reflecting coating mixture, method and coated article with a coating for reflecting heat energy in a frequency range up to about 2.6 microns.
Certain articles are designed for use at elevated temperatures, for example at least about 1400° F., and also are subject to exposure to heat energy. Frequently it is desirable to provide the outer surface portion of such an article with a coating that will reflect heat energy from a metal or ceramic substrate in a selected frequency range. The coating reflects heat energy and thereby reduces heat exposure and heat stressing of the substrate. When the surface portion is intended to experience fluid borne particles, it is desirable to provide the coating with erosion resistance as well. Examples of such articles include components for glass or metal melting furnaces. Other examples are components for power generating apparatus such as gas turbine engines parts, generally made from high temperature superalloys or high temperature ceramics, and designed to operate at temperatures of up to about 2000° F. or more.
One current practice to protect a gas turbine engine article surface from the high temperatures experienced during operation is to apply a ceramic type thermal barrier coating, generally called a TBC, to its outer surface. A commonly used type of TBC is a coating based on zirconia stabilized with yttria, for example about 93 wt. % zirconia stabilized with about 7 wt. % yttria. This general type of TBC has been reported in such U.S. Pat. No. as 4,055,705-Stecura et al. (patented Oct. 25, 1977); U.S. Pat. No. 4,328,285-Siemers et al. (patented May 4, 1982); and Gupta et al. 5,236,745 (patented Aug. 17, 1993). However, such TBC coatings have a relatively rough surface and do not provide adequate heat energy reflection in frequency ranges for certain applications. In addition, application of some TBC type of coating requires use of apparatus having a controlled atmosphere or vacuum.
Another current practice for such protection is to apply to an outer surface portion a multi-layer heat reflecting coating by chemical vapor deposition (CVD). Besides being a relatively expensive type of coating, the size of an article that can be coated by CVD is limited by the size of the equipment in which the CVD is conducted, because of the controlled conditions (vacuum, inert gas, etc.) required for CVD application.
BRIEF SUMMARY OF THE INVENTION
The present invention, in one form, provides an air sprayable, fluid, non-metallic coating mixture comprising the combination of two different high purity alpha alumina powders. A first powder predominantly is in a particle size range of less than about 1 micron; a second powder is of a particle size greater than 7 times the particle size of the first powder. The mixture includes a glass powder having a melting point of at least about 1400° F. and of a particle size less than about 45 microns to provide one portion of a coating matrix about the alumina powders. The balance of the mixture comprises a binder that will form up to about 80% of the weight of the binder in silica when heated at a temperature of at least the melting point of the glass powder, to provide another portion of the coating matrix.
One form of the present invention provides a coated article having a coating comprised of the two types of alpha alumina in a matrix of the glass and the silica, the coating being of a thickness of greater than 25 microns to less than 250 microns. Another form of the invention is a method for making the coating in which method the coating mixture is provided in a fluid form suitable for air or airless spraying. The mixture is air sprayed onto an article surface to provide a coating preform. The preform then is heated at a temperature that is greater than about 1400° F., is at least the melting point of the glass powder, is below the melting point of alumina and at which the binder will form silica. This temperature melts the glass and combines with silica to form a matrix about the alumina powders.


REFERENCES:
patent: 4663557 (1987-05-01), Martin, Jr. et al.
patent: 4924141 (1990-05-01), Taubner et al.
patent: 5627426 (1997-05-01), Whitman et al.
patent: 5695824 (1997-12-01), Hiraishi
patent: 5723937 (1998-03-01), Whitman et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat reflective, erosion and wear resistant coating mixture,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat reflective, erosion and wear resistant coating mixture,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat reflective, erosion and wear resistant coating mixture,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2531537

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.