Heat powered heat pump system and method of making same

Refrigeration – Reversible – i.e. – heat pump – With flow control or compressor details

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S235100, C062S238700

Reexamination Certificate

active

06418745

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a new and improved heat powered heat pump system and method of using it. More particularly, the present invention relates to a heat powered heat pump system which would utilize relatively low temperature heat energy, waste energy or direct electrical energy to implement the heat pump process for the purpose of selectively cooling or heating an interior space more efficiently.
2. Description of the Related Art
High energy costs and environmental concerns over the generation of pollution are requiring more energy efficient mechanisms for heating and cooling interior spaces utilizing renewable energy resources and, in some cases, waste heat from any number of sources. Such a mechanism must be easily adapted to a number of different energy sources without the need for expensive or customized adaptors.
The interior spaces which require heating and cooling are not limited to living and working environments, but also extend to space involved in transportation for humans as well as perishable commodities. The means of providing heating and cooling must be economical, efficient to manufacture and inexpensive to maintain in order to be readily accessible for any number of applications in everyday life.
The standard Carnot reversible heat pump cycle, as simplified by use of a throttling valve for expansion of the refrigerant fluid and a mechanical compressor for the compression of the vapor, has been in use for a wide variety of applications, and is well known. Essentially, in the cooling mode, such systems pass saturated liquid refrigerant through an expansion valve to a lower pressure, the temperature of the refrigerant falls, and the cooled refrigerant is then directed to an evaporator where heat is absorbed from the atmosphere, thereby cooling said atmosphere (or some other medium where cooling is desired).
This cycle is frequently reversible such that the same system is used as a heat pump. To provide heating of a space, energy is added to the system by a compressor and ambient air. Most of the prior art devices which accomplish this task are known to consume large amounts of energy (usually electrical energy), and are inefficient in both the cooling and heating modes.
However, the benefits of heat powered heat pump devices designed for use in the home or office are well known. Examples of different types and kinds of arrangements and techniques for utilizing heat powered heat pumps are disclosed in U.S. Pat. Nos. 4,918,837, 4,617,801, 4,537,037, RE 31,281 and 4,250,715.
In general, the standard vapor-compression cycle is the commonly used system to cool interior space. This cycle can be reversed to supply heat to interior space, and such a system that can cool and heat interior space is referred to as a “heat pump”.
This vapor-compression cycle utilizes a compressor unit to compress refrigerant vapor to perform the cooling/heating process. The compressor component is conventionally a rotary device that requires external rotary shaft power to perform its compression function. This rotary shaft power is commonly supplied by an electric motor or, in the case of vehicles, an internal combustion engine.
Heat pumps for heating and cooling interior spaces in vehicles are generally known in the prior art. Such a device is described in U.S. Pat. No. 4,918,937. The claimed device comprises a hybrid system which uses both a mechanical and a thermal compressor. The mechanical compressor initiates cooling of the passenger compartment and the engine driven compressor is started after the compartment is precooled.
This novel invention, while allowing for lower fuel consumption over conventional cooling mechanisms for automobiles, requires the use of both a mechanical and a thermal compressor. The mechanical compressor would require energy in order to function just as conventional cooling systems for automobiles with associated energy losses. In addition, the mechanism would be complex, bulky, expensive to manufacture and potentially very costly to maintain.
Furthermore, this inventive device provides for cooling of passenger compartments, so another entire unit would have to be provided for heating the passenger compartment, resulting in additional weight, bulk, equipment and further expense. Additionally, this invention is designed specifically for automobiles with no mention or suggestion of conversion to other applications or usages.
Therefore, it would be highly desirable to have a new and improved heat powered heat pump system and method for making same which would allow the expedited cooling or warming of an interior space, efficiently utilize available waste heat, a renewable energy source, or direct electrical energy at much greater efficiency to facilitate the heat pump process, have a multitude of potential applications, be economical to manufacture and maintain and be readily adapted to a variety of sizes and uses.
The device described in U.S. Pat. No. 4,617,801 addresses the problem of providing for both heating and cooling capacities in a single unit. This unique invention uses thermally powered dual reciprocating compressors and any number of closed heat transfer loops. The size and complexity of this invention would make it impractical for use in small confined areas such as the interior space of an automobile. Additionally, there is no mechanism to provide for the near instantaneous initiation of heating or cooling that has come to be expected in heating or cooling such low volume spaces.
Therefore, it would be highly desirable to have a new and improved device and method for making same for a heat powered heat pump which would allow immediate cooling or warming of an interior space, utilize waste heat, a renewable energy source or direct electrical energy at much greater efficiency to perform the heat pump process, have a multitude of potential applications, be economical to manufacture and maintain and be readily adapted to a variety of usages.
U.S. Pat. No. 4,537,037 also describes a device that addresses the problem of providing for both heating and cooling options in a single unit. However, the device is complex in structure, employing two or more compressors and three or more closed loops and three or more different refrigerants, as well as three or more evaporators. The device uses sequential displacement and necessarily utilizes a series of interconnected subsystems in order to accomplish the heating or cooling of a space within a structure.
Because of the complexity and consequential enormous size of the resulting device, the primary object of this invention is necessarily aimed at the cooling or heating of relatively large structures, for example buildings. The unit would not be practical for the use in a small volume space such as in a vehicle.
In addition, the invention does not provide for the immediate heating or cooling of a confined space that would be expected in automobiles.
Therefore, it would be highly desirable to have a new and improved device and method for making same for a heat powered heat pump which would allow immediate cooling or warming of an interior space, utilize waste heat, a renewable energy source or direct electrical energy at much greater efficiency to perform the heat pump process, have a multitude of potential applications, be economical to manufacture and maintain and be readily adapted to a variety of usages.
U.S. Pat. No. RE 31,281 describes a device that has a two heat exchangers, one of which communicates with a source of air outside a structure and one of which communicates with a source of air inside a structure. While the invention provides for both a heating and a cooling system, it is primarily designed to heat and cool structures rather than small confined spaces.
Additionally, the invention utilizes a natural gas fired vapor generator which is then used to power a steam turbine or turbo generator unit. This complex heat pump does not provide for utilization of renewable energy sources, direct electrical energy, or waste heat to facilitate or p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat powered heat pump system and method of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat powered heat pump system and method of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat powered heat pump system and method of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848861

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.