Supports: cabinet structure – Spaced insulated wall – Refrigerator cabinet
Reexamination Certificate
2001-08-20
2002-11-26
Hansen, James O. (Department: 3637)
Supports: cabinet structure
Spaced insulated wall
Refrigerator cabinet
C312S400000, C220S592060, C052S792100
Reexamination Certificate
active
06485122
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention relates to a heat-insulating wall, such as a refrigerator door, a refrigerator housing, or the like, having an at least as far as possible vacuum-tight outer paneling that, together with a vacuum-tight connecting diaphragm secured at its free borders and formed from a material with a low level of heat conduction and an inner paneling vacuum-tightly connected to the connecting diaphragm at its free borders, encloses an evacuable cavity filled with an evacuable supporting material. The connecting diaphragm is covered by a diaphragm covering formed from material with a low level of heat conduction.
European Patent EP 06 58 716 B1 describes and illustrates a vacuum-insulation-based heat insulating wall for forming a refrigerator door or a refrigerator housing. The heat-insulating wall disclosed has the outer wall surfaces that are supported in relation to one another by supporting material and are connected to one another at their free borders by a diaphragm produced from a material with a low level of heat conduction, for example, a diaphragm produced from a thin high-grade steel plate. To protect the diaphragm, the diaphragm has a diaphragm covering disposed in front of it, likewise produced from a material with a low level of heat conduction. To not reduce the heat-insulating action of the wall in the region of the diaphragm, use is made of a diaphragm covering made of a heat-insulating material such as foamed plastic. By virtue of its damping action, the diaphragm covering does indeed protect the impact-sensitive, thin-walled diaphragm, and, at the same time, prevents heat conduction between the wall surfaces that are at different temperature levels. However, the more or less porous nature of the foamed material, which, on a function-related basis, has little inherent stability, means that the material is barely suitable, if at all, for anchoring functional parts such as an opposite magnetic pole or the like. Furthermore, with unfavorable force conditions, the material, which is only impact-resistant to a small extent, may be damaged at least on the surface even if subjected to just a low level of force. Such damage has a serious effect not just on the functional capacities of the foamed material, which takes in water more easily as a result, but also on the appearance of the covering. Furthermore, surface treatment of the covering, for example an enameling, as is inevitably required on account of the site of application of the covering because it is directly on view to an end user, can only be carried out with extremely poor results and is in no way permanent.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a heat-insulating wall that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that avoids the disadvantages of the prior art by straightforward construction measures.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a heat-insulating wall, including a substantially vacuum-tight outer paneling having free borders, an inner paneling having free borders, a substantially vacuum-tight connecting diaphragm, a diaphragm cover, and a protective profile having a magnet or a magnetic seal. The diaphragm is respectively vacuum-tightly connected to the inner paneling and to the outer paneling at the free borders. The outer paneling, the diaphragm, and the inner paneling define an evacuable cavity. An evacuable supporting material fills the cavity. The diaphragm cover covers at least a part of the diaphragm. The protective profile is secured one or both of the inner paneling and the outer paneling and substantially covers the diaphragm cover. Preferably, the diaphragm and the diaphragm cover are formed from material having a low level of heat conduction.
The diaphragm covering of the invention has a protective profile disposed in front of it. The profile at least as far as possible covering over the diaphragm covering is secured on the inner paneling and/or the outer paneling and is provided with an opposite magnetic pole or magnetic seal.
By virtue of using a protective profile to protect the diaphragm covering, the diaphragm covering can be optimized in a particularly specific manner for the tasks for which it is actually suitable. These tasks include protecting the diaphragm and improving the heat insulation in the border region of the heat-insulating wall. The covering is optimized because the functions over and above the latter, namely securing an opposite pole or a magnetic seal or also producing an esthetically pleasing appearance are assigned to a further component, which is optimized specifically, in terms of the material used and the shaping, for such purposes. Thus, for example, the diaphragm covering may be produced from a material having a sufficient resistance to water diffusion. Furthermore, the diaphragm covering is additionally protected by the at least as far as possible inherently rigid protective profile, in particular, from unintended force peaks as a result of impact loading. It is also possible for the protective profile to be configured cost-effectively, in particular, if it is produced by plastic injection molding, in ways that, on a function-related basis, could not be transferred to the diaphragm covering. Furthermore, dividing up the functions between the protective profile and the diaphragm covering also gives the advantage that the covering may also be configured with relatively thin walls because any pressure loading emanating, for example, from impacts or the like, that may occur is intercepted by the inherently rigid protective profile. In addition, dividing up the functions between the diaphragm covering and the protective profile renders a large selection of materials available for the profile. It is also the case that the protective profile, because it has to perform merely purely mechanical functions, may be configured straightforwardly such that it is easily possible to overcome production tolerances of the heat-insulating wall in the wall region of the heat-insulating wall. As a result, the capacity for producing the heat-insulating wall, and, thus, the possibility of mass-producing the latter, is improved to a considerable extent. Using two components that meet different requirements makes it easily possible to avoid a compromise, which is unavoidable if a single component is used, to the detriment of fulfilling all the required functions.
In accordance with another feature of the invention, the magnet is an opposite magnetic pole.
In accordance with a further feature of the invention, the protective profile is constructed essentially in the manner of a U-profile with a retaining device or retaining means that is provided on the legs and is intended for releasably securing the profile on the inner paneling and/or the outer paneling.
The very U-shaped configuration of the protective profile provides the profile with a certain level of inherent rigidity and dimensional stability. Furthermore, due to the retaining device provided on its legs, the protective profile can be installed particularly straightforwardly and quickly on the free borders of the outer paneling and/or of the inner paneling.
In accordance with an added feature of the invention, the retaining device for securing the U-profile is configured as retaining grooves that can be connected to the free borders of the outer paneling and inner paneling. Such a retaining measure makes it possible for the protective profile to be easily secured with a force fit on the free borders of the outer paneling and the inner paneling. Moreover, the groove-like configuration of the retaining device results in securely positioned fastening on the free borders of the outer paneling and of the inner paneling when the free borders are introduced into the retaining grooves, which serve as a mount for them. As a result, the protective profile is guided laterally in a positionally stable manner.
The opposite
Feinauer Adolf
Hirath Jürgen
Holzer Stefan
Horn Richard
Kentner Wolfgang
BSH Bosch Siemens Hausgeräte GmbH
Greenberg Laurence A.
Hansen James O.
Locher Ralph E.
Stemer Werner H.
LandOfFree
Heat-insulating wall does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat-insulating wall, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat-insulating wall will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2969919