Heat exchanging, optically interrogated chemical reaction...

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Including heat exchanger for reaction chamber or reactants...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S105000, C422S051000, C422S068100, C422S082050, C422S105000, C435S288700, C435S303100, C356S246000, C356S340000, C356S442000, C250S238000

Reexamination Certificate

active

06565815

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides an assembly useful for heat exchanging chemical processes.
BACKGROUND OF THE INVENTION
There are many applications in the field of chemical processing in which it is desirable to precisely control the temperature of chemicals and to induce rapid temperature transitions. In these reactions, heat is exchanged between chemicals and their environment to increase or decrease the temperature of the reacting chemicals. It is often desirable to control the temperature change in a manner that accurately attains the target temperature, avoids undershooting or overshooting of the temperature, and quickly reaches the target temperature. Such control of temperature may inhibit side reactions, the formation of unwanted bubbles, the degradation of components at certain temperatures, etc., which may occur at non-optimal temperatures. It is of further interest to optically observe and monitor the chemical reaction.
Applications for heat exchanging chemical reactions may encompass organic, inorganic, biochemical and molecular reactions, and the like. In organic and inorganic reactions, chemicals may be heated to achieve the activation energy for the reaction. Examples of thermal chemical reactions include isothermal nucleic acid amplification, thermal cycling amplification, such as polymerase chain reaction (PCR), ligase chain reaction (LCR), self-sustained sequence replication, enzyme kinetic studies, homogenous ligand binding assays, and more complex biochemical mechanistic studies that require complex temperature changes. Temperature control systems also enable the study of certain physiologic processes where a constant and accurate temperature is required.
Numerous devices and systems have been described in the art for conducting thermal transfer reactions. These devices use a variety of designs for heat transfer, such as water baths, air baths, and solid blocks such as aluminum. Chemical reactions in small reaction volumes have also been described.
Conventional instrumentation, for example, typically consists of a block of aluminum having as many as ninety-six conical reaction tubes. The aluminum block is heated and cooled either by a Peltier heating/cooling apparatus, or by a closed-loop liquid heating/cooling system, flowing through channels machined into the aluminum block. Because of the large thermal mass of the aluminum block, heating and cooling rates are limited to about 1° C./sec resulting in longer processing times. For example, in the PCR application, fifty cycles may require two or more hours to complete.
Part of the reason for the relatively large metal block is to provide sufficient mass to ensure a constant and uniform temperature at each reaction site, as well as from site to site. Some chemical reaction instruments also incorporate a top-plate, which is heated and cooled to ensure a uniform temperature across the top of all sample solutions. The sample inserts are tapered to maximize thermal contact between the insert and the metal block. One problem with these instruments is that the large thermal masses, required for temperature uniformity, take a long time (and or a large heating/cooling power source) to heat and to cool. Usual heating and cooling rates for these types of instruments are on the order of 1-3° C./second.
Typically, the highest heating rate obtainable in commercial instruments is on the order of 3° C./second, and cooling rates are significantly less. With these relatively slow heating and cooling rates, it has been observed that some processes requiring high control of temperature are inefficient. For example, reactions may occur at the intermediate temperatures, creating unwanted and interfering side products, such as in PCR “primer-dimers” or anomalous amplicons, which are deleterious to the analytical process. The poor control of temperature also results in over consumption of reagents necessary for the intended reaction.
Furthermore, for some diagnostic and environmental chemical detection methodologies, the volume of the tested unknown sample can be important. For example, in the detection of viruses in blood or other bodily fluids using PCR, the detection limit is about 10 virions. Therefore, a minimum fluid volume is required depending upon the concentration of virions in the sample. By way of illustration, at a concentration of 100 virions/mL, the sample size should be at least 0.1 mL. For more dilute samples, even larger sample volumes are necessary. Therefore, the chemical analysis system should be capable of handling milliliter fluid volumes.
Another requirement in many chemical analyses is the ability to monitor the chemical reaction and detect the resulting product. A preferred detection technique is optical interrogation, typically using fluorescence or chemiluminescence. For ligand-binding assays, time-resolved fluorescence and fluorescence polarization are often used.
The control of heating and cooling changes may be referred to as thermal cycling. The term “thermal cycling” is herein intended to mean at least one change of temperature, i.e. increase or decrease of temperature, in the environment to which chemicals are exposed. Therefore, chemicals undergoing thermal cycling may shift from one temperature to another and then stabilize at that temperature, transition to a second temperature or return to the starting temperature. The temperature cycle may be performed once or repeated as many times as required by the particular chemical reaction. The various chemical reactions occurring during these temperature cycles are more specific and more efficient when the temperature is raised and lowered to the various required reaction temperatures as quickly as possible and controlled very precisely.
Devices which control the transfer of heat for chemical reactions are applicable for synthesis reactions such as thermal cycling PCR to amplify a segment of nucleic acid. In this methodology, a DNA template is used with a thermostable DNA polymerase, e.g., Taq DNA polymerase, nucleoside triphosphates, and two oligonucleotides with different sequences, complementary to sequences that lie on opposite strands of the template DNA and which flank the segment of DNA that is to be amplified (“primers”). The reaction components are cycled between a higher temperature (e.g., 95° C.) for dehybridizing double stranded template DNA, followed by lower temperatures (e.g., 40-60° C. for annealing of primers and 70-75° C. for polymerization). Repeated cycling among dehybridization, annealing, and polymerization temperatures provides exponential amplification of the template DNA. For example, up to 1 &mgr;g of target DNA up to 2 kb in length can be obtained with 30-35 cycles of amplification from only 10
−6
&mgr;g of starting DNA.
Amplification has been applied to the diagnosis of genetic disorders; the detection of nucleic acid sequences of pathogenic organisms in a variety of samples including blood, tissue, environmental, air borne, and the like; the genetic identification of a variety of samples including forensic, agricultural, veterinarian, and the like; the analysis of mutations in activated oncogenes, detection of contaminants in samples such as food; and in many other aspects of molecular biology. Polynucleotide amplification assays can be used in a wide range of applications such as the generation of specific sequences of cloned double-stranded DNA for use as probes, the generation of probes specific for uncloned genes by selective amplification of particular segments of cDNA, the generation of libraries of cDNA from small amounts of mRNA, the generation of large amounts of DNA for sequencing and the analysis of mutations. Instruments for performing automated PCR chain reactions via thermal cycling are commercially available.
Some of the instrumentation suitable for newer processes, requiring “real-time” optical analysis after each thermal cycle, has only recently become available. For example, the Perkin Elmer (PE) 7700 (ATC) instrument as well as the PE 9600 thermal cycler are based on a 96-well

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat exchanging, optically interrogated chemical reaction... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat exchanging, optically interrogated chemical reaction..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat exchanging, optically interrogated chemical reaction... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3010556

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.