Heat exchanging apparatus for handling and transporting vessels

Refrigeration – Using electrical or magnetic effect – Thermoelectric; e.g. – peltier effect

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S372000, C062S457800, C062S457400, C126S383100, C126S386100

Reexamination Certificate

active

06701718

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Related Applications
2. Field of Invention
The invention relates generally to heating and cooling a media-containing vessel and handling or transporting the vessel. The present invention covers the fields of heat-exchanging devices and handling-transporting devices. First, the present invention provides a heat-exchanging means for cooling or heating fluids contained in a vessel. Second, the present invention provides a handling-transporting mechanism, with a locking means, to safely and quickly transport a cooled or heated vessel and its contents therein, without incorporating additional equipment.
BACKGROUND OF THE INVENTION
In industry, growth media have been known for decades and are used in laboratories and research facilities through the world. These are made by mixing a specified amount of dehydrated growth media with a set volume of water. To completely dissolve the media, the growth media is typically mixed as it boils. This can be performed on a composite hot plate with a magnetic stirrer where a metallic stir-bar inside the flask follows the magnetic guide of rotating magnet housed within the hot-plate base. After boiling, the media is typically sterilized by autoclaving the media-containing vessel at 121 degrees Celsius for a minimum of fifteen (15) minutes.
After the flask has been removed from the autoclave, it is still too hot to handle directly. Furthermore, because media are generally created in large volumes (500 ml−2 L), it often takes a fair amount of time for the media-containing vessel and media therein to cool sufficiently to allow for handling or transporting. In addition, temperature-sensitive agents, such as antibiotics, virions, and enzymes, cannot be added while the vessel is still hot. Because the introduction of a thermometer into the liquid media can cause contamination, most people simply judge by feeling the outer glass surface of the vessel to determine when the vessel has sufficiently cooled to allow for handling and transporting.
The problems associated with a lack of a heat-exchanging device are prevalent. First, premature handling or transporting of hot flask's side walls can lead to burns and spills. A person handling or transporting hot media-containing vessels often has to wear bulky oven-mitt like gloves if he needs to pour, for example, the hot solution into Petri dishes before the media begins to solidify. Second, a subjective guess of the temperature of the vessel introduces unwanted experimental variation between batches of solutions. Third, waiting on large volumes of solution to sufficiently cool is time-consuming and uneconomical. Fourth, if the gradual cooling process is compromised, such as placing the hot media-containing vessel in a cold-water bath or refrigerator, the media inside the vessel may solidify non-uniformly on side walls.
Thus, what is needed is a heat-exchanging apparatus that simultaneously serves as a handling-transporting device, which incorporates a quick-release handle and a locking means to transport a media-containing vessel.
It has long been known to use hollow tubes constructed in helical patterns in heat-exchanging devices and as handling-transporting devices simultaneously, without the need of additional equipment. Thus, existing prior art teaches either a helical heat-exchanging means or a handling or transporting means coupled with a locking means, but not a combination.
For example, U.S. Pat. No. 654,358 shows the use of spiral pipes through which liquid passes to be cooled. The apparatus is placed in a cooler or icebox to be cooled as liquid flows from one end to the other. The spiral pipes are located within a container, which prevents the pipes from being used as a handling or transporting means. In addition, the pipes are not compressible to easily and safely expand and contract the pipes to serve as a handling or transporting device.
Another proposal for a heat-exchanging device is set out in U.S. Pat. No. 936,060. That patent discloses an ice-freezer that has a cooling medium composed of cooling coils that provide a passage of brine therein. However, this invention also does not use the cooling coils as a handling-transporting device, in conjunction with its intended purpose of serving as a heat-exchanging device.
In addition, the prior art teaches handling or transporting devices with a releasable spring and locking means. However, their purposes and uses are limited to handling or transporting and do not incorporate the combination of handling-transporting means coupled with a heat-exchanging means.
U.S. Pat. No. 46,235 teaches a device that has snail-shaped clamping ends that are compressed and released by hand pressure. However, the clamp is limited in its uses. It is fairly small and is not designed to fit around vessels. Moreover, the invention does not provide a means for thermo-stabilizing media-containing vessels. Thus, additional equipment is needed for the invention to simultaneously serve as a heat-exchanging device and a handling-transporting device.
SUMMARY OF INVENTION
The present invention provides an ergonomic and safe apparatus by which a media-containing vessel can be cooled or heated at a controlled rate and further allows a means whereby the vessel may also be handled-transported without the need for additional equipment.
The present invention relates to a heat exchanging apparatus with a quick-release handle and a locking means to transport a hot or cold media-containing vessel. This present invention satisfies the needs stated above by simultaneously providing a non-obvious combination of a heat-exchanging device and a handling-transporting device with a quick-release handle for locking means, for a media-containing vessel. A preferred version of the present invention comprises: (1) a flexible, hollow tube generally in the shape of a coil; (2) an insulated, gripping means; (3) two flexible, heat-insulating tubes; and (4) a locking means.
The flexible, hollow tube can be cut to any desired length and adjusted to fit the circumference of the vessel to be cooled or heated and handled or transported. The flexible, hollow tube can be any flexible material; e.g., a metal, such as copper, or a plastic. The insulated gripping means can also be cut to any desired length to fit around the handle to allow for squeezing and holding of the flexible, hollow tube while fitting the present invention over the media-containing vessel to be cooled or heated. The two flexible, heat-insulating tubes should also be cut to desired length to allow for handling or transporting of the vessel from one destination to another. The flexible, heat-insulating tubes are adapted to connect to a source of hot and cold fluids at one end. In use, the flexible, hollow tube is wrapped around the media-vessel to come into contact with the outer surface of the vessel while creating a helical configuration around the circumference of the vessel.
Finally, a locking means is connected to the insulated handle and the opposite end of the flexible, hollow tube to prevent squeezing of the quick-release handle when it is locked. This insures that the apparatus will not be squeezed to cause the flexible, hollow tube to expand and release from the circumference of the media-containing vessel, thus causing the vessel to be dropped unexpectedly.
The heat-exchanging device is engaged when fluid is introduced into the flexible, hollow tube via the flexible, heat-insulating tubes that are connected to a fluid dispenser. As fluid travels through the flexible, hollow tube, in a helical motion around the circumference of the media-containing vessel, the solution within the media-containing vessel is heated or cooled depending on its temperature relative to the fluid traveling through the flexible, hollow tube. By increasing or decreasing the temperature and velocity of the fluid traveling through the flexible, hollow tube, the heating or cooling rate can be controlled. This provides the benefit of maximizing the consistency between batches when thermo-sensitive agents are adding to the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat exchanging apparatus for handling and transporting vessels does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat exchanging apparatus for handling and transporting vessels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat exchanging apparatus for handling and transporting vessels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3272552

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.