Heat exchanger

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Including heat exchanger for reaction chamber or reactants...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

422222, 422312, F28D 2100

Patent

active

047956186

DESCRIPTION:

BRIEF SUMMARY
This invention relates to a heat exchanger comprising a reactor section and a heat transfer section, which is heat-conductively joined to the reactor section, in accordance with the prior art part of claim 1.
German Patent Publication No. 25 52 686 discloses a process of making porous and fibrous metal bodies, which are coated with a catalytic substance and used as exhaust catalysts for motor vehicles. Owing to the loose fibrous structure required to minimize the resistance to flow in exhaust gas catalysts, the heat conduction in such metal bodies is not very effective.
German Patent Specification No. 903,986 discloses for a catalytic generation of heat an apparatus in which a wire mesh made of a catalytic substance is provided on a heat exchanger surface and a connecting layer is provided to ensure a direct metallic, effective heat-conductive contact between the catalyst carrier and the catalytic substance. In such a design the effective heat exchanger surface is increased but that ratio of area to volume is inadequate for an efficient heat exchanger for maintaining a small temperature difference between the heat-delivering and the heat-receiving fluids. Another disadvantage of the apparatus disclosed in German Patent Specification No. 903,986 resides in that the evaporating surface is of conventional design so that the evaporative capacity is limited to about 5000 W/m.sup.2 K by the coefficient of heat transfer a.sub.1 between the evaporator surface and the fluid to be evaporated, e.g., during film evaporation. Besides, that proposal inevitably involves a high expenditure for expensive catalytic material.
German Utility Model No. 19 98 525 discloses a heat exchanger comprising heat exchanger tubes embedded in a porous body made of metallic particles. Just as in the apparatus known from German Patent Specification No. 903,896, the heat transfer in that heat exchanger is limited by the coefficient of heat transfer between the smooth-surface of the heat exchanger tube and the liquid flowing in said tube.
It is an object of the invention to provide a heat exchanger which is in accordance with the prior art part of claim 1 and which permits a heat transfer with a much higher heat flux density to be achieved between the heat-receiving and the heat-delivering sides.
Because the cross-section of the flow passage of the heat transfer section in at least part of the length thereof is at least approximately completely filled with the porous heat-conductive material, the large internal surface of the porous heat-conductive material is available as a heat exchange surface for the transfer of heat to or from the heat transfer fluid. The heat-conductive material contained in the reactor section is in direct heat-conductive connection to the heat-conductive material in the heat transfer section by means of the boundary layer (partition) so that heat is transferred only by heat conduction from the reactor section to the heat transfer section or vice versa. As a result, the heat flux density is mainly limited by the heat thermal conductivity of the boundary layer. Because the boundary layer disposed between the porous heat-conductive material of the reactor section and the porous heat-conductive material of the heat transfer section is in an effective heat-conducting contact with said materials and for this reason is hardly stressed in compression, said boundary layer may be thin so that in case of the use of a boundary layer consisting of effectively heat-conducting metal layers having a thickness of about 1 mm a transfer of reaction heat at a rate of 380,000 W/m.sup.2 K, based on the surface area of the boundary layer, can theoretically be achieved.
Owing to the effective heat transfer between the reactor and heat transfer sections, the temperature in the reactor bed of the reactor section can be controlled as desired by a control of the rate or temperature of the heat transfer fluids and/or of the educts. In particular, a uniform temperature distribution in the reactor bed can be achieved.
In accordance with the invent

REFERENCES:
patent: 1949205 (1934-02-01), Herring et al.
patent: 2034715 (1936-03-01), Dreyfus
patent: 2127561 (1983-08-01), Herrmann
patent: 2459907 (1949-01-01), Winslow et al.
patent: 3073685 (1963-01-01), Grove, Jr. et al.
patent: 3135703 (1964-06-01), Sill
patent: 3433299 (1969-03-01), Fleming
patent: 3857680 (1974-12-01), Porta et al.
patent: 3966443 (1976-06-01), Okano et al.
patent: 4101287 (1978-07-01), Sweed et al.
patent: 4108241 (1978-08-01), Fortini
patent: 4420462 (1983-12-01), Clyde
patent: 4602673 (1986-07-01), Michelfelder et al.
"Energieeinsparung Durch Einsatz von Brennwertkesseln", Theo Jannemann, Internationale Zeitschrift fur Rationelle Energieanwendung Heft 3-1984-pp. 137-144.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat exchanger does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat exchanger, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat exchanger will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2167449

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.