Heat conductive sheet and method of producing the sheet

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Adhesive outermost layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S344000, C428S3550EN, C428S3550BL, C428S3550AC, C428S425800, C428S450000, C428S423700, C428S424800, C428S451000, C428S516000, C428S698000

Reexamination Certificate

active

06794030

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a heat conductive sheet and a production method thereof. More specifically, this invention relates to a heat conductive sheet, which is useful as a heat transfer medium of electronic components and so forth, and a production method thereof
BACKGROUND OF THE INVENTION
Dissipation of heat from heat generating members has become a problem in various fields. In a variety of devices, such as electronic devices, personal computers, and so forth, in particular, removal of heat from heat generating electronic components and other components (hereinafter generically referred to as the “heat generating components”) incorporated in these devices has become a serious problem. The probability of erroneous operations of various heat generating components is likely to increase exponentially as the temperature of the components rises. Because these heat generating components have become smaller and smaller in size, and the processing speed has become higher and higher in recent years, the requirement for heat radiation performance has become all the more important.
Various heat radiation members such as a heat sink, a heat radiation fin, a metal heat radiation plate, etc. have been incorporated with heat generating components in order to dissipate the heat generated from, and built up in, the heat generating components. Also, various heat transfer sheets have been used as a heat transfer spacer and as a heat transfer medium between the heat generating components and the heat radiation member. A heat transfer spacer exhibiting high heat conductivity of at least 2.0 W/m·K and sufficiently reduced heat resistance in the packages has become necessary, particularly in recent years, in order to cope with remarkable exothermy resulting from a higher output operation of electronic devices.
Most of the conventional heat conductive sheets comprise the blend of a silicone rubber and a filler for improving heat conductivity. Examples of this filler are alumina, silica (quartz), boron nitride, magnesium oxide, and so forth. As a concrete example, Japanese Unexamined Patent Publication (Kokai) No. 56-837 describes a heat radiation sheet comprising an inorganic filler and a synthetic rubber such as a silicone rubber as the principal components, wherein the inorganic filler comprises two components of (A) boron nitride and (B) alumina, silica, magnesia, zinc white and mica. Japanese Unexamined Patent Publication (Kokai) No. 7-111300 describes an insulating, heat radiation sheet formed by causing boron nitride powder having a thickness of at least 1 &mgr;m to be co-present with a silicone rubber. Japanese Unexamined Patent Publication (Kokai) No. 7-157664 describes a heat conductive silicone rubber sheet that contains at least boron nitride and a ceramic material having the same crystal structure as that of boron nitride or a basic metal oxide in a silicone rubber, and is applied to a woven fabric. Furthermore, Japanese Unexamined Patent Publication Kokai) No. 10-204295 discloses a heat conductive silicone rubber composition useful for forming a sheet, which composition contains (A) a specific organopolysiloxane, (B) boron nitride powder, (C) a fluorine-modified silicone surfactant and (D) a curing agent.
Though these heat conductive silicone rubber sheets exhibit high heat conductivity, they involve several problems yet to be solved. For example, silicone rubber itself is expensive, and its cost is reflected in the cost of the heat radiation sheet. Because the sheet is fabricated by using silicone rubber having a low curing rate, the production process of the sheet is time-consuming Because large amounts of fillers are added in order to improve heat conductivity, a working machine is likely to be worn out with the increase of the viscosity. The production process of such a sheet is complicated, and the production apparatus includes an air heating furnace, a press machine, etc. and becomes large in scale.
The sheet itself of the conventional silicone rubber sheet is hard. Therefore, if the heat generation component or the heat radiation member has a specific shape, such as ruggedness or curvature, the sheet cannot follow such a shape, and the heat resistance increases due to the resulting gaps. If the rubber sheet is pushed strongly in order to eliminate such gaps, delicate electronic components are pushed excessively, and functional troubles are likely to occur.
Attempts have been made in recent years to make the silicone rubber softer so that the rubber sheet can acquire high adhesion capable of following the shapes of the components having complicated shapes. For example, Japanese Unexamined Patent Publication (Kokai) No. 10-189838 discloses a heat conductive gel useful for a heat radiation sheet, which gel is prepared by adding a silicone oil and a heat conductive filler such as boron nitride, silicon nitride, aluminum nitride, magnesium oxide, or the like, by using a condensation type gel such as a condensation curing type liquid silicone gel as a binder, and which is cured to the gel at a normal temperature. Though this heat radiation sheet can obtain high adhesion, however, its heat conductivity remains about 0.8 to 1.1 W/m*K. Therefore, the heat conductivity must be further improved in order to satisfy the recent requirement. If the packing ratio of the filler is increased to obtain higher heat conductivity, plasticity of the gel composition drops and the forming property gets deteriorated. Furthermore, the strength of the heat radiation sheet obtained after curing drops too. Even if the combination of the two kinds of inorganic fillers (A) and (B) described in the aforementioned Japanese Unexamined Patent Publication (Kokai) No. 56-837 is added to the silicone gel, the highest packing ratio that allows sheet forming is at most 45%, and a heat conductive sheet satisfying both requirements for high adhesion and high heat conductivity cannot be acquired.
In addition, another problem is caused if the silicone rubber or other heat conductive sheets are made to be softer. In other words, the heat conductive sheet is offered generally under the state where its tacky surface is covered with a release liner (release paper), and the release liner is peeled immediately before using the sheet. As the sheet thickness becomes smaller to satisfy the requirement for higher heat radiation performance, the heat conductive sheet is likely to get elongated when it is peeled from the release liner, and, when the liner is peeled after bonding, bonding of the sheet in a desired shape becomes difficult
As a means for solving the problem of elongation of the heat conductive sheet it has been customary to use the heat conductive sheet under the state where it is supported by a support such as a plastic film, a metal foil, or the like. For example, Japanese Unexamined Patent Publication (Kokai) No. 6-291226 describes a heat radiation sheet having the feature in that a cured product of a silicone resin composition containing a heat conductive material is applied to one, or both, of the surfaces of a metal foil (foil of aluminum, copper, silver, etc.) having preferably a thickness of 0.01 to 0.05 mm. Japanese Unexamined Patent Publication (Kokai) No. 9-17923 describes a heat conductive sheet characterized by including a silicone gel layer on both surfaces of a support of an aluminum foil, or the like, having preferably a thickness of 0.025 to 0.10 mm. The metal foil used as the support is excellent in heat conductivity. However, because the thickness of the support is 0.02 mm or more, the foil lacks flexibility. When the support is the outermost layer and is in direct contact with the surface of the heat generating component or the surface of the heat radiation member, however, the foil fails to sufficiently follow the surface shape, and desired heat radiation performance cannot be obtained.
Japanese Unexamined Patent Publication (Kokai) No. 8-174765 discloses a heat-resistant heat conductive silicone rubber composite sheet obtained by curing a silicone rubber composition consist

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat conductive sheet and method of producing the sheet does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat conductive sheet and method of producing the sheet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat conductive sheet and method of producing the sheet will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3258882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.