Heat and moisture exchange apparatus for architectural...

Stoves and furnaces – Solar heat collector – Controlling solar radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C126S650000, C126S629000, C165S059000, C165S054000, C096S118000

Reexamination Certificate

active

06178966

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to air conditioning apparatus, and, more specifically, to a heat and moisture apparatus for enhancing the exchange of heat and moisture between air streams.
BACKGROUND OF THE INVENTION
Centrally heated or cooled buildings require that some portion of fresh “makeup” air be added continuously to the total volume of circulated air to keep the space fresh, comfortable and healthy. Hence, a corresponding portion of the air which has already been heated or cooled must be exhausted, resulting in a loss of heat energy and a corresponding reduction in the heating or cooling efficiency of the system conditioning the air in the spaces. Heat exchangers are commonly used in the exhaust air and makeup airflow paths of these systems to recover some of the energy from the exhaust air and to induce warmer make-up air during heating processes and cooler makeup air during cooling processes.
So-called “total heat exchangers,” which perform moisture exchange as well as heat exchange, serve to introduce warmer makeup air having a higher moisture content during heating process and cooler air having a lower moisture content during cooling process.
Materials used for heat exchangers commonly include metal foils and sheets, plastic films, paper sheets, and the like. Good heat exchange is generally possible with these materials, but moisture exchange cannot easily be performed. Dessicants, or moisture adsorbing materials, are occasionally employed to transfer moisture. With this method, the dessicant merely holds the moisture. To effect transfer moisture between gas streams, the dessicant must be relocated from the gas stream of higher moisture content to the gas stream of lower moisture content, requiring an additional input of mechanical energy. With many dessicant materials, satisfactory performance can be achieved only with the input of additional thermal energy to induce the dessicant to desorb the accumulated moisture.
Heat and moisture exchange are both possible with an exchange-film made of paper. However, water absorbed by the paper from condensation, rain, or moisture present in the air can lead to corrosion, deformation, and mildew growth, and, hence, deterioration of the paper exchange film.
The various types of heat and moisture exchangers in common usage are generally contained within an opaque metal housing and located at or near the building air-handling units in the mechanical room, basement, or rooftop of the building. The nature of moisture exchange requires a very large surface area in contact with the gas stream, and, consequently, total heat exchangers are often very large in size when compared to heat-only exchangers. A larger exchanger in the conventional location requires additional mechanical room space and/or additional load-bearing capacity of the roof in the case of a roof-top unit.
Porous polymeric or ceramic films are capable of transferring both heat and moisture when interposed between air streams of differing energy and moisture states. A system for heat and moisture exchange employing a porous membrane is described in Japanese Laid-Open Patent Application No. 54-145048. A study of heat and moisture transfer through a porous membrane is given in Asaeda, M., L. D. Du, and K. Ikeda. “Experimental Studies of Dehumidification of Air by an Improved Ceramic Membrane,” Journal of Chemical Engineering of Japan, 1986, Vol. 19, No. 3. A disadvantage of such porous composite film is that it also permits the exchange of substantial amounts of air between the gas streams, as well as particles, cigarette smoke, cooking odors, harmful fumes, and the like. From the point of view of building indoor air quality, this is undesirable. In order to prevent this contamination of make-up air, the pore volume of a porous film is preferably no more than about 15%, which is difficult and expensive to achieve uniformly. Furthermore, a porous film made to a thickness of 5 to 40 micrometers in order to improve heat exchange efficiency tears easily and is difficult to handle.
Accordingly, a need exists for an efficient heat and moisture exchange apparatus which will not contaminate make-up air.
Additionally, a need exists for heat- and moisture-exchange for use in a system for conditioning air which has excellent heat exchange efficiency, high moisture exchange capability, and serves as a barrier to air flow between exhaust and makeup air streams.
SUMMARY OF THE INVENTION
The present invention contemplates an apparatus for enabling heat and moisture exchange between make-up and exhaust air streams in the heating and air conditioning system of a structure. The exchange apparatus of the present invention has a modular, panel-like configuration which may be integrated into the exterior walls of a structure. More specifically, the exchanger apparatus may be implemented as a curtainwall panel comprising a rigid frame for holding a pair of light transmitting panes, the frame and panes collectively defining an interior cavity within the apparatus. A water vapor permeable barrier, attached to the frame, partitions the interior channel into at least first and second subchannels which may be coupled in fluid communication with make-up and exhaust air streams, respectively. The light transmitting properties of the panes allow incident solar radiation to permeate the panels, thereby creating a more natural ambient environment in the interior of the structure adjacent with the panel, as well as raising the temperature of the air stream and the water vapor permeable barrier to further enhance the exchange of moisture through the barrier.
According to a first aspect of the invention, an apparatus for enabling heat and moisture exchange comprises an exchanger housing having an exterior wall defining an interior channel through which a gas stream may pass. A water vapor permeable barrier is disposed within the interior channel and partitions the interior channel into a plurality of subchannels. At least a portion of the exterior wall of the exchanger housing comprises a light transmitting material. The subchannels defined within the apparatus are connectable to make-up an exhaust air streams or sources thereof. In one embodiment, the heat and moisture exchanger is further coupled to a preheating apparatus which may be used to heat one or both air streams prior to passage through the exchanger apparatus. In one embodiment, the preheating apparatus comprises an exterior wall defining a preheat channel through which an air stream may flow and an energy absorbing material disposed within the preheat channel. The energy absorbing material may comprise a metal, or, alternatively, photovoltaic cells or film. In another embodiment, the pressure of the gas streams are controlled so that the makeup and exhaust streams flow through the subchannels of the exchanger apparatus in different directions.
In accordance with another aspect of the invention, the water vapor permeable barrier may comprise a composite film made of porous polymeric membrane having applied thereto a water-vapor-permeable polymeric material so as to form a non-porous barrier to block the flow of air and other gas. The composite film is interposed between a gas stream having a first, higher water content, i.e. the makeup air stream, and a gas stream having a second, lower water content, i.e., the exhaust air stream. Moisture from the gas stream having the higher water content permeates through the composite film to the side adjacent the gas stream having the lower water content where the moisture is taken up by the gas stream having the lower water content. Heat from the higher temperature gas stream is conducted through the composite film and taken up by the lower temperature gas stream, thereby effecting heat and moisture exchange between the gas streams adjacent each side of the barrier. In one embodiment the porous polymeric component of the composite film comprises a porous polytetrafluoroethelyene membrane. In another embodiment the non-porous water-vapor-permeable polymeric component of the composite film

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat and moisture exchange apparatus for architectural... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat and moisture exchange apparatus for architectural..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat and moisture exchange apparatus for architectural... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2556201

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.