Compositions – Fire-extinguishing – Foam-stabilizant or colloid-stabilizant containing
Reexamination Certificate
2001-03-08
2004-08-17
Anthony, Joseph D. (Department: 1714)
Compositions
Fire-extinguishing
Foam-stabilizant or colloid-stabilizant containing
C252S008000, C252S007000, C252S003000, C169S045000, C169S046000, C169S047000, C516S110000
Reexamination Certificate
active
06776920
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a magnetically treated water-based solution of sodium silicate and sodium bicarbonate formed in a gel and its method of production and delivery as an aid to removing surface coatings and as a fire-fighting aid.
2. Description of the Prior Art
U.S. Pat. No. 5,415,900 to Reed discloses a method of delivering a substance into a material mass. This invention is specifically directed to the rearrangement of fluid molecules from an agglomerated state to a more linear and organized state. As a result of this linear molecular organization produced by a magnetic influence, the fluid's permeability into a material mass is greatly enhanced, and penetration of the fluid through the surface and periphery of the material mass occurs much more readily than if the fluid's molecular organization had remained in an agglomerated state. The magnetic influence utilized in this invention not only makes the fluid more permeable by effecting a linear organization of its molecules, which is a critical feature of the invention, but also serves to facilitate the assimilation of such fluids throughout the interior of the material mass. This is accomplished by polarizing two fluids to opposite charges with magnetic fields of different polarities. As a result, the naturally attractive forces between the oppositely charged fluids increases the rate of absorption of the second fluid to be introduced into the material mass and ensures that the absorption of this second fluid is directed throughout the interior of the material mass.
An additional advantage of the fluid polarization effected by a magnetic influence is that the positive polarity of the fluid molecules will be increased, thereby increasing the spaces between the individual fluid molecules through greater repellency. As a result of this increased polarity, the fluid molecules are separated to a greater extent so that the molecules are able to penetrate individually rather than collectively into a given material mass, thereby significantly enhancing the permeability of the fluid. In addition, because fluid molecules which are positively charged by a magnetic influence become more separated, chemically reactive agents that are added to the fluids, which serve as carrier vehicles, attain a more uniform distribution amongst the fluid molecules. After the carrier fluids and chemically reactive agents therein are introduced into the material mass, the more uniform dispersion of the chemical agents in the carrier fluids results in an acceleration of the normal reaction time of such chemically reactive agents within the interior of the material mass.
U.S. Pat. No. 5,804,068 to Reed discloses a magnetic fluid treatment device. The object of this invention is to provide a device that can effectively polarize a fluid contained therein in order to gradually rearrange its fluid molecules into a more linear, organized and substantially more permeable state.
SUMMARY OF THE INVENTION
The present invention uses polarized fluids for the purpose of producing gels. The present invention discloses how the mixture of varying ratios of water to sodium silicate and water to sodium bicarbonate can create a gel with beneficial uses including a gel with heat suppression and emissive characteristics and a gel capable of aiding in safely removing surface coatings, such as paint or other surface sealers.
The present invention is directed towards a magnetically treated sodium silicate and sodium bicarbonate gel and a method for its delivery. Initially, for example, a first solution is created by mixing 55 gallons of water with 50 lbs of sodium bicarbonate and passing the resulting mixture through a magnetic device of positive polarity, such as the device taught in U.S. Pat. No. 5,804,068, to create a positively charged solution. A second solution is made by mixing 11 gallons of sodium silicate with 44 gallons of water and passing the resulting mixture through a magnetic device of negative polarity, such as the device taught in U.S. Pat. No. 5,804,068, to create a negatively charged solution. In order to produce a gel material, the positively charged first solution is mixed in a static mixer with the negatively charged second solution in equal amounts to create a gel. While these two mixtures will ultimately form a gel when mixed together in an uncharged state, by magnetically activating the two solutions, the resulting gel has more uniform heat and emissive properties and is more highly structured to provide for more uniform assimilation.
The present invention also discloses a gaseous production methodology by introducing gaseous carbon dioxide into a mixture of the first and second magnetically treated solutions which action instantaneously converts the newly formed liquid mixture or semi-soliquid mixture into a gel. Thus it is an object of the present invention to provide a heat-absorbing gel to be used in fighting fires. Due to the unique structure of the gel mixture, high levels of carbon dioxide gas are absorbed therein and the gas further acts as a catalyst in the formation of the heat-absorbing gel of this invention.
Another object of the present invention is to provide a method of delivering a fire-fighting gel into a fire. The system improves upon virtually all existing fire-fighting systems. The system feeds both the first positively charged solution and the second negatively charged solution into a static mixer connected to a pressure pump. The mixture is pressurized to approximately 5000 psi and pumped into a hand-held or turret-mounted dispersion device. The dispersion device can be a zero degree pressure tip that rotates 360 degrees continuously, propelled by the 5000 psi pressure pump. The high level of carbon dioxide present in most fire conditions mixes with the sprayed mixture and instantaneously renders the sprayed liquid mixture into a gel.
A further object of the present invention is to provide a gel and method of use to aid in the removal of surface coatings. A typical cutting device is used in conjunction with the gel which acts as a lubricant. The gel material further encapsulates the coating or concrete particles being removed, while extending the life of the cutting device 300%-500% over current cutting device life spans. The cohesive quality of the gel imparts the ability to contain the materials being removed. The used gel material can be collected, and the particulate and paint separated therefrom.
The Occupational Health and Safety Agency (“OSHA”) and the Environmental Protection Agency (“EPA”) monitor the application, use, containment, and disposal of solvents and other chemical means used in the removal of surface coatings. Many existing systems have detrimental side effects in their application both to the user and to the environment. Mechanical systems of coating removal, such as high pressure washing and scarification, produce dust and odor, and also require containment. Since many environments are enclosed, and most chemical processes require a high-level air exchange, there is a need for a safe and efficient method of coating removal. The present invention lubricates and contains the removed coating material particles, which action eliminates large amounts of dust and airborne coating material. Thus the coating removal method of this invention serves to meet the safety requirements of the law.
REFERENCES:
patent: 4368134 (1983-01-01), Kaeser
patent: 5415900 (1995-05-01), Reed
patent: 5537363 (1996-07-01), Holcomb
patent: 5573817 (1996-11-01), Reed
patent: 5599531 (1997-02-01), Holcomb
patent: 5658573 (1997-08-01), Holcomb
patent: 5804068 (1998-09-01), Reed
patent: 6607648 (2003-08-01), Franceschetti et al.
Anthony Joseph D.
Nitkin William
LandOfFree
Heat-absorbing gel material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat-absorbing gel material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat-absorbing gel material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3292028