Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Corporeal artificial heart – heart assist – control... – Including electrical or magnetic means adjacent to flexible...
Reexamination Certificate
2001-05-07
2003-07-15
Isabella, David J. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Corporeal artificial heart, heart assist , control...
Including electrical or magnetic means adjacent to flexible...
C600S016000, C600S037000
Reexamination Certificate
active
06592619
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to assisting the natural heart in operation and, more specifically, to actuating a wall of the natural heart.
BACKGROUND OF THE INVENTION
The natural human heart and accompanying circulatory system are critical components of the human body and systematically provide the needed nutrients and oxygen for the body. As such, the proper operation of the circulatory system, and particularly, the proper operation of the heart, are critical in the overall health and well-being of a person. A physical ailment or condition which compromises the normal and healthy operation of the heart can therefore be particularly critical and may result in a condition which must be medically remedied.
Specifically, the natural heart, or rather the cardiac tissue of the heart, can fail for various reasons to a point where the heart can no longer provide sufficient circulation of blood for the body so that life can be maintained. To address the problem of a failing natural heart, solutions are offered to provide ways in which circulation of blood might be maintained.
Some solutions involve replacing the heart. Other solutions are directed to maintaining operation of the existing heart. One such solution has been to replace the existing natural heart in a patient with an artificial heart or a ventricular assist device. In using artificial hearts and/or assist devices, a particular problem stems from the fact that the materials used for the interior lining of the chambers of an artificial heart are in direct contact with the circulating blood. Such contact may enhance undesirable clotting of the blood, may cause a build-up of calcium, or may otherwise inhibit the blood's normal function. As a result, thromboembolism and hemolysis may occur. Additionally, the lining of an artificial heart or a ventricular assist device can crack, which inhibits performance, even when the crack is at a microscopic level. Moreover, these devices must be powered by a power source which may be cumbersome and/or external to the body. Such drawbacks have limited use of artificial heart devices to applications having too brief of a time period to provide a real lasting benefit to the patient.
An alternative procedure also involves replacement of the heart and includes a transplant of a heart from another human or animal into the patient. The transplant procedure requires removing an existing organ (i.e. the natural heart) from the patient for substitution with another organ (i.e. another natural heart) from another human, or potentially, from an animal. Before replacing an existing organ with another, the substitute organ must be “matched” to the recipient, which can be, at best, difficult, time consuming, and expensive to accomplish. Furthermore, even if the transplanted organ matches the recipient, a risk exists that the recipient's body will still reject the transplanted organ and attack it as a foreign object. Moreover, the number of potential donor hearts is far less than the number of patients in need of a natural heart transplant. Although use of animal hearts would lessen the problem of having fewer donors than recipients, there is an enhanced concern with respect to the rejection of the animal heart.
In an effort to continue use of the existing natural heart of a patient, other attempts have been made to wrap skeletal muscle tissue around the natural heart to use as an auxiliary contraction mechanism so that the heart may pump. As currently used, skeletal muscle cannot alone typically provide sufficient and sustained pumping power for maintaining circulation of blood through the circulatory system of the body. This is especially true for those patients with severe heart failure.
Another system developed for use with an existing heart for sustaining the circulatory function and pumping action of the heart, is an external bypass system, such as a cardiopulmonary (heart-lung) machine. Typically, bypass systems of this type are complex and large, and, as such, are limited to short term use, such as in an operating room during surgery, or when maintaining the circulation of a patient while awaiting receipt of a transplant heart. The size and complexity effectively prohibit use of bypass systems as a long term solution, as they are rarely portable devices. Furthermore, long term use of a heart-lung machine can damage the blood cells and blood borne products, resulting in post surgical complications such as bleeding, thromboembolism function, and increased risk of infection.
Still another solution for maintaining the existing natural heart as the pumping device involves enveloping a substantial portion of the natural heart, such as the entire left and right ventricles, with a pumping device for rhythmic compression. That is, the exterior wall surfaces of the heart are contacted and the heart walls are compressed to change the volume of the heart and thereby pump blood out of the chambers. Although somewhat effective as a short term treatment, the pumping device has not been suitable for long term use. Typically, with such compression devices, a vacuum pressure is needed to overcome cardiac tissue/wall stiffness, so that the heart chambers can return to their original volume and refill with blood. This “active filling” of the chambers with blood limits the ability of the pumping device to respond to the need for adjustments in the blood volume pumped through the natural heart, and can adversely affect the circulation of blood to the coronary arteries. Furthermore, natural heart valves between the chambers of the heart and leaching into and out of the heart are quite sensitive to wall and annular distortion. The movement patterns that reduce a chamber's volume and distort the heart walls may not necessarily facilitate valve closure (which can lead to valve leakage).
Therefore, mechanical pumping of the heart, such as through mechanical compression of the ventricles, must address these issues and concerns in order to establish the efficacy of long term mechanical or mechanically assisted pumping. Specifically, the ventricles must rapidly and passively refill at low physiologic pressures, and the valve functions must be physiologically adequate. The myocardial blood flow of the heart also must not be impaired by the mechanical device. Still further, the left and right ventricle pressure independence must be maintained within the heart.
Another major obstacle with long term use of such pumping devices is the deleterious effect of forceful contact of different parts of the living internal heart surface (endocardium), one against another, due to lack of precise control of wall actuation. In certain cases, this coaptation of endocardium tissue is probably necessary for a device that encompasses both ventricles to produce independent output pressures from the left and right ventricles. However, it can compromise the integrity of the living endothelium.
Mechanical ventricular wall actuation has shown promise, despite the issues noted above. As such, devices have been invented for mechanically assisting the pumping function of the heart, and specifically for externally actuating a heart wall, such as a ventricular wall, to assist in such pumping functions.
Specifically, U.S. Pat. No. 5,957,977, from which priority is claimed and which is incorporated herein by reference in its entirety, discloses an actuation device for the natural heart utilizing internal and external support structures. That patent provides an internal and external framework mounted internally and externally with respect to the natural heart, and an actuator or activator mounted to the framework for providing cyclical forces to deform one or more walls of the heart, such as the left ventricular wall. The present invention further adds to the art of U.S. Pat. No. 5,957,977 and specifically sets forth various embodiments of activators or actuator devices which are suitable fordeforming the heart walls and supplementing and/or providing the pumping function for the natural heart.
Accordingly, it is an o
Chattopadhyay Urmi
Isabella David J.
University of Cincinnati
Wood Herron & Evans LLP
LandOfFree
Heart wall actuation device for the natural heart does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heart wall actuation device for the natural heart, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heart wall actuation device for the natural heart will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3095347