Electrical audio signal processing systems and devices – Hearing aids – electrical – Noise compensation circuit
Reexamination Certificate
2000-11-29
2004-05-18
Tran, Sinh (Department: 2643)
Electrical audio signal processing systems and devices
Hearing aids, electrical
Noise compensation circuit
C381S321000, C381S094300
Reexamination Certificate
active
06738486
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a hearing aid with an adaptive filter for suppression of acoustic feedback in the hearing aid.
BACKGROUND OF THE INVENTION
It is well known in the art of hearing aids that acoustic feedback may lead to generation of undesired acoustic signals which can be heard by the user of a hearing aid.
Acoustic feedback occurs when the input transducer of a hearing aid receives and detects the acoustic output signal generated by the output transducer. Amplification of the detected signal may lead to generation of a stronger acoustic output signal and eventually the hearing aid may oscillate.
It is well known to include an adaptive filter in the hearing aid to compensate for acoustic feedback. The adaptive filter estimates the transfer function from output to input of the hearing aid including the acoustic propagation path from the output transducer to the input transducer. The input of the adaptive filter is connected to the output of the hearing aid and the output signal of the adaptive filter is subtracted from the input transducer signal to compensate for the acoustic feedback. A hearing aid of this type is disclosed in U.S. Pat. No. 5,402,496.
In such a system, the adaptive filter operates to remove correlation from the input signal, however, signals representing speech and music are signals with significant auto-correlation. Thus, the adaptive filter cannot be allowed to adapt too quickly since removal of correlation from signals representing speech and music will distort the signals, and such distortion is of course undesired. Therefore, the convergence rate of adaptive filters in known hearing aids is a compromise between a desired high convergence rate that is able to cope with sudden changes in the acoustic environment and a desired low convergence rate that ensures that signals representing speech and music remain undistorted.
The lack of speed of adaptation may still lead to generation of undesired acoustic signals due to acoustic feedback. Generation of undesired acoustic signals is most likely to occur at frequencies with a high feedback loop gain. The loop gain is the attenuation in the acoustic feedback path multiplied by the gain of the hearing aid from input to output.
Acoustic feedback is an important problem in known CIC hearing aids (CIC=
c
omplete
i
n the
c
anal) with a vent opening since the vent opening and the short distance between the output and the input transducers of the hearing aid lead to a low attenuation in the acoustic feedback path from the output transducer to the input transducer, and the short delay time maintains correlation in the signal.
Various measures are well known in the art to cope with acoustic feedback. For example, it is well known to keep the loop gain below a certain limit in order to prevent generation of feedback resonance. It is also known to adjust the phase of the feedback signal, to perform a frequency transpose, and to compensate for the feedback signal.
Typically, the acoustic environment of the hearing aid changes over time, and often changes rapidly over time, in such a way that propagation of sound from the output transducer of the hearing aid to its input transducer changes drastically. For example, such changes may be caused by changes in position of the user in a room, e.g. from a free field position in the middle of the room to a position close to a wall that reflects sound. Changes may also be generated if the user yawns or if the user puts the receiver of a telephone to the ear. Such changes, some of which may be almost instantaneous, are known to involve changes in attenuation of the feedback path of more than 20 dB.
It is known to keep the loop gain below a safe limit by limiting the gain adjustment in the hearing aid to a maximum allowable gain based on experience. However, a large safety margin is needed to cope with the above-mentioned variations in the acoustic environment and with variations in physical fitting of the hearing aid to the wearer. It is also known to determine the maximum allowable gain during fitting of the hearing aid to a specific user. However, a large safety margin is still needed. The safety margin prevents the capabilities of the hearing aid to be fully exploited, such as in situations where the gain could be adjusted to a value that is higher than the maximum allowable gain without generation of undesired sounds.
In order to be able to compensate for a severe hearing deficiency, it is desirable to be able to set a high gain in the hearing aid. However, the risk of generating oscillation, also denoted feedback resonance, restricts the maximum gain that may be employed, even in situations with a high attenuation in the acoustic feedback path.
In DE-A-19802568 and U.S. Pat. No. 5,016,280, a hearing aid is disclosed including a measuring system for determining the characteristics of the acoustic feedback path. A test signal is transmitted through the system in order to determine the characteristics of the feedback path.
In DE-A-19802568 the coefficients in a digital filter are determined based on the impulse response of the feedback path, and in U.S. Pat. No. 5,016,280 the filter coefficients of an adaptive compensation filter are calculated using a leaky LMS algorithm operating on white-noise signals transmitted through the feedback path.
The respective measuring systems are rather complicated and the duration of the determination is relatively long, and the normal function of the hearing aid is interrupted during the determination. Thus, the determination is performed at certain occasions only, e.g. when the user switches the hearing aid on. Thus, still, a relatively high safety margin for the gain is needed to cope with changes in the acoustic environment between determinations.
In U.S. Pat. No. 5,619,580 a hearing aid with an adaptive filter and a continuously operating measuring system is disclosed. A pseudo random noise signal is injected into the output signal. A monitoring system controls the gain of the hearing aid so that the loop-gain is kept below a constant value which may be frequency dependent. The filter coefficients of the adaptive filter are monitored and their update rate is adjusted according to a statistical analysis which complicates the system. It is another disadvantage of the system that a noise generator is needed and that the generated noise signal is always present. Moreover, the system increases the adaptation rate and thus deteriorates the signal quality when a change in acoustic environment is detected also in situations where the hearing aid is not operating close to resonance.
Thus, there is a need for an improved hearing aid that overcomes the above-mentioned disadvantages and substantially eliminates the requirement of a gain safety margin so that the operating gain in certain acoustic environments can be higher than for known hearing aids.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, these and other objects are fulfilled by a hearing aid with an adaptive filter for compensation of acoustic feedback. The adaptive filter operates to estimate the transfer function from output to input of the hearing aid including the acoustic propagation path from the output transducer to the input transducer. The input of the adaptive filter is connected to the electric output of the hearing aid and the output signal of the adaptive filter may be subtracted from the input transducer signal to compensate for the acoustic feedback.
The hearing aid comprises an input transducer for transforming an acoustic input signal into a first electrical signal, a first filter bank with bandpass filters for dividing the first electrical signal into a set of bandpass filtered first electrical signals, a first set of combining nodes for receiving said set of bandpass filtered first electrical signals and combining them with a set of third electrical signals in order to output a first set of combining node output signals, a processor adapted for individual processing of each signal among the set of combinin
LandOfFree
Hearing aid does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hearing aid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hearing aid will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3251115