Headwall for drain pipe

Hydraulic and earth engineering – Fluid control – treatment – or containment – Flow control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06644889

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to headwalls for drain pipes and, more particularly, to sectional headwalls for drain pipes.
2. Description of the Prior Art
The term “headwall” or “end wall” typically refers to a reinforced concrete structure that supports one end of a pipe, such as a drain pipe, and retains earth fill on one side of the structure. The usual technique for constructing concrete headwalls involves the manual preparation of forms made typically of wood or metal and built at the intended headwall location. The forms are stripped away from the concrete after the headwall is formed. The forms are temporary in nature and require a significant amount of labor expense for carpentry and other trades necessary for the manual erection of these forms. Several trips to the headwall construction site are generally required before the concrete headwall is complete.
This prior art headwall construction method has other numerous disadvantages. For example, the headwall construction site is often located in an inaccessible or undeveloped area. The wooden forms most often used to construct the concrete headwall are typically made of heavy wooden planks and plywood sections that are nailed together and are difficult, in practice, to erect in these areas. The forms must be stabilized with timbers, boards and stakes that are driven into the ground at the construction site. This can be difficult, time consuming and labor-intensive at undeveloped sites. In addition, paper or another similar material must be positioned around the drain pipe, which extends through the forms to prevent concrete seepage and loss when the forms are filled with concrete. There is usually a pronounced gap in the area around the drain pipe because of the paper positioned around the drain pipe while the concrete cures. Furthermore, the forms must be greased to facilitate their removal after the concrete has hardened. Finally, the poured concrete must be vibrated to remove air voids and the surface of the concrete, when hardened, must be smoothed to remove imperfections left by the forms.
Over the years, attempts have been made to improve the “traditional” prior art method of constructing concrete headwalls discussed hereinabove. For example, U.S. Pat. No. 1,098,766 to Scully et al. discloses a bank retainer for a culvert pipe formed of a plurality of sheet metal plates that are bolted together. In operation, a bottom section of the bank retainer is placed below the culvert pipe and an upper section placed above the culvert pipe. The two sections are then bolted together. Once the sheet metal, box-like structure of the bank retainer is formed, the interior of the bank retainer is filled with earth through an opening in the front of the bank retainer. U.S. Pat. No. 1,664,503 to Cornell discloses a bulkhead wall for a culvert pipe that includes a series of metal front plates that surround the culvert pipe. The front plates have braces that extend outward into the backfill located behind the bulkhead wall. U.S. Pat. No. 3,779,021 to Green discloses a method of forming a concrete headwall that includes the use of prefabricated forms for concrete. The forms are removable after formation of the concrete headwall.
A more recent attempt to improve the traditional method discussed previously is disclosed by U.S. Pat. No. 4,723,871 to Roscoe. The Roscoe patent discloses a shell-like retainer structure for forming headwalls. The shell-like retainer structure includes two spaced apart plates that each define a U-shaped opening. The plates are centered over a drain pipe with the U-shaped opening defined by the respective plates cooperating with the drain pipe. After the plates are centered over the drain pipe, the structure is filled with earth through an opening formed in the top of the structure.
While each of these references attempts to improve upon the traditional method of forming concrete headwalls, several of the devices disclosed by these references are as heavy, bulky, and labor-intensive to use as the concrete forms used in the traditional method. In addition, these devices generally do not provide flexibility in adjusting the height of the headwall. The prior art devices discussed hereinabove typically provide a headwall of a given height that is defined by the height of the device. These devices generally do not provide the ability to alter the height of the headwall in accordance with design parameters for the headwall, such as the terrain at the intended location of the headwall, the amount of backfill that must be retained by the headwall, and the size of the drain pipe that is to be used with the headwall. This is a distinct disadvantage because it is common in the art to design the headwall at the construction site without the benefit of engineering the headwall in advance.
Consequently, it is an object of the present invention to provide a headwall that has an adjustable height that may be quickly and easily altered to suit the particular design criteria at the headwall construction site. It is a further object of the present invention to provide a headwall that overcomes the disadvantages of the traditional method of forming concrete headwalls.
SUMMARY OF THE INVENTION
The above objects are accomplished with a headwall assembly and a method of constructing a headwall in accordance with the present invention. The headwall assembly is intended to support a drain pipe. The headwall assembly, according to one embodiment of the present invention, includes a unitary base member, an annular drain pipe adapter, and a unitary lid member. The base member has two longitudinal walls and two end walls, which define an opening extending through the base member for receiving filler material into the base member. The base member further includes a sleeve extending between and connecting the longitudinal walls. The sleeve defines an aperture extending through the longitudinal walls. The drain pipe adapter is configured to be received in the sleeve and has an inner diameter sized to receive the drain pipe. The lid member is configured to engage a top end of the base member and enclose the top end of the base member.
The sleeve connecting the longitudinal walls of the base member may include a flange extending outward from one of the longitudinal walls. The flange may extend outward circumferentially around the aperture except in the area of a keyway recess defined by the flange. The drain pipe adapter may include a lip member configured to cooperate with the flange for connecting the drain pipe adapter to the base member. The lip member of the drain pipe adapter and the flange extending from the sleeve may be configured to be connected together with mechanical fasteners.
The drain pipe adapter may include a projection formed integrally with the lip member. The projection may be configured to cooperate with the keyway recess for preventing rotational movement of the drain pipe adapter relative to the base member when the drain pipe adapter is inserted into the sleeve. The drain pipe adapter may include a flange extending from the lip member. The flange extending from the lip member may be configured to be connected directly to the drain pipe with mechanical fasteners.
The longitudinal walls of the base member may be connected together by a plurality of cone shaped connectors extending from one of the longitudinal walls to the opposing longitudinal wall. The cone shaped connectors may define cone shaped recesses in the surface of the longitudinal wall. The headwall assembly may further include a plurality of cone shaped plugs configured to engage the recesses defined by the connectors.
The top end of the base member may define a circumferentially extending recess and the lid member may include a depending lip configured to engage the recess such that the lid member snap fits onto the base member.
The base member, the drain pipe adapter, and the lid member may be made of plastic. The lid member may include integrally formed projections for attaching light reflectors to the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Headwall for drain pipe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Headwall for drain pipe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Headwall for drain pipe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3181484

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.