Fluid sprinkling – spraying – and diffusing – Liquid sprayer for transparent panel – Headlamp
Reexamination Certificate
1999-05-13
2004-05-25
Graham, Gary K. (Department: 1744)
Fluid sprinkling, spraying, and diffusing
Liquid sprayer for transparent panel
Headlamp
C015S250002, C015S250040, C239S281000
Reexamination Certificate
active
06739521
ABSTRACT:
FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a shield cleaning system, operating solely by spraying with washing fluid, for shields of an automobile, in particular for shields of automobile lights, with a washing arm movable over and at a distance from the shield by a motor and with a washing nozzle which is arranged on the washing arm and which is provided for spraying washing fluid onto the shield.
In a known shield cleaning system, the washing nozzle is moved by the washing arm from a position of rest next to the shield into an operating position in a central position above the shield. The shield cleaning system is thereby essentially independent of the external design of the automobile. However, since the washing nozzle also has to clean the edge regions of the shield from the central position above the latter, in the operating position the washing nozzle is at a long distance from the shield. The washing fluid jet may consequently be deflected by the relative wind. In order to clean the shield, therefore, the known shield cleaning system requires particularly high pressure at the washing nozzle and a large quantity of washing fluid. The known shield cleaning system therefore has a very high-powered washing fluid pump and a washing fluid container of large volume. This leads, however, to a high outlay in terms of construction and to high production costs of the shield cleaning system.
Furthermore, a washing nozzle has become known, which has a swirl chamber with an axial and a tangential inlet. A conical and a central washing fluid jet can thereby be generated alternately. The dirt adhering to the shield is consequently flushed from inside outward to the shield edge, as a result of which a particularly good cleaning action is to be achieved. Since, in this case too, the washing nozzle is located in a central position above the shield, a very high pressure at the washing nozzle and a large quantity of washing fluid are also required in this design, particularly in order to clean the edge regions of the screen.
It would be conceivable to improve the cleaning action by means of a shield wiper which wipes away the dirt released by the washing fluid. This is not possible, however, particularly with regard to automobile light shields produced from transparent plastic, since they may be scratched by the screen wiper. In future automobiles, for example, video cameras could well also be used, the shields of which would likewise have to be protected from being scratched by a screen wiper.
SUMMARY OF THE INVENTION
The object on which the invention is based is to provide a shield cleaning system of the initially mentioned type, in such a way that, with a particularly small quantity of washing fluid, it cleans the shield thoroughly and without the risk of the shield being scratched.
This object is solved, according to the invention, in that the washing nozzle is provided for spraying a part region of the shield and can be moved by the washing arm over that region of the shield which is to be cleaned.
Since the washing nozzle of the shield cleaning system according to the invention sprays only a part region of the shield with washing fluid, said washing nozzle may be arranged at a substantially shorter distance above the shield than the washing nozzle of the known shield cleaning system. Since the washing nozzle is at a short distance from the shield, the washing fluid jet is deflected only insignificantly by the relative wind. As a result, dirt adhering to the shield is flushed away according to the movement of the washing arm, so that the shield is cleaned particularly thoroughly. Moreover, only a particularly small washing fluid pump and a very small washing fluid container are required, since losses of washing fluid are kept particularly low due to the short distance of the washing nozzle from the shield. The shield cleaning system according to the invention can therefore be produced particularly cost-effectively and has particularly low washing fluid consumption. Furthermore, scratching of the shield is ruled out because it is cleaned solely by the washing fluid jet. Shields of any size can be cleaned by arranging a plurality of washing nozzles which overlap slightly in the spray region.
According to an advantageous development of the invention, the shield cleaning system according to the invention has a particularly high cleaning action, along with a particularly low washing fluid consumption, if the washing nozzle is designed as a fluidic nozzle with a washing fluid jet oscillating essentially transversely to the direction of movement of the washing arm. Even if the pressure in the washing fluid line is relatively low, such fluidic nozzles generate a sharp punctiform washing fluid jet which constantly oscillates laterally through an intended angle. As a result, the washing nozzle has a striplike or elliptic spray region. The washing fluid jet is guided over the entire shield by means of the movement of the washing nozzle by the washing arm.
According to another advantageous development of the invention, the washing arm is particularly simple in terms of construction if it is of tubular design for receiving a washing fluid duct leading to a plurality of washing nozzles and has a connection for a washing fluid line.
If there is a plurality of washing nozzles connected to a common washing fluid duct, all the washing nozzles receive the same quantity of washing fluid if, according to another advantageous development of the invention, the washing fluid duct has a tapering inner contour, as seen from the connection of the washing fluid line.
According to another advantageous development of the invention, washing fluid is constantly present in the vicinity of the washing nozzles if a nonreturn valve is arranged in the washing fluid duct. This design keeps a delay in cleaning the shield after the shield cleaning system has been switched on particularly short.
According to another advantageous development of the invention, the washing nozzles can be prevented in a simple way from freezing up if a heating element is arranged in the washing fluid duct and/or at the washing nozzles.
According to another advantageous development of the invention, the shield cleaning system can be produced particularly cost-effectively if the washing arm is mounted pivotably about a pivot axis.
In known shield cleaning systems irregularly shaped screens can be cleaned only partially, since, in this case, the washing nozzle sprays the edges of the shields only inadequately with washing fluid. However, according to another advantageous development of the invention, shields of irregular shape are cleaned virtually completely if they have means for adjusting the distance of the washing nozzle from the shield during the movement of said washing nozzle. By virtue of this design, the washing nozzle is at a particularly long distance from the shield when a wide region of the shield is to be sprayed. Since the spray region, of fluidic nozzles in particular, widens with an increasing distance from the washing nozzle, the shield is reliably cleaned as far as and into its edge regions.
According to another advantageous development of the invention, the means for increasing the distance of the washing nozzle from the shield are particularly simple in terms of construction if the washing arm has a yoke mounted pivotably in a lateral region of the shield and, when in the basic position, at least partially surrounding the shield.
According to another advantageous development of the invention, the washing arm is particularly stable if it has a yoke mounted on two opposite sides of the shield. By virtue of this design, for example, round or elliptic shields can be cleaned in a particularly simple way, since, in this case, the distance of the washing nozzle from the shield and, consequently, the width of the sprayed region change uniformly with the pivot angle of the washing arm. Oval shields are cleaned completely by means of a plurality of washing nozzles arranged next to one another, without washing fluid b
Bandemer Joachim
Hahn Torsten
Kober Rainer
Farber Martin A.
Graham Gary K.
Mannesman VDO AG
LandOfFree
Headlight cleaning system operating exclusively by spraying... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Headlight cleaning system operating exclusively by spraying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Headlight cleaning system operating exclusively by spraying... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3241642