Header pin pre-load apparatus

Metal working – Means to assemble or disassemble – Means to assemble electrical device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S825000, C029S845000

Reexamination Certificate

active

06216338

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to electrical connections and, more particularly, to an apparatus for selectively deflecting a pin for use in an electrical connection, and an electrical connection incorporating a deflected pin.
2. Description of Related Art
Making electrical connections secure and durable, i.e., resistant to mechanical uncoupling (and resultant electrical uncoupling), has been a problem for as long as electrical connections have been made. Joined plug and receptacle elements almost always seem to tend to loosen and separate when exposed to vibration, flexing, pulling, or other mechanical disturbances.
A fairly typical electrical connection with multi-pin/receptacle connectors is disclosed in U.S. Pat. No. 4,072,390 (Fox). The connector is for ribbon cable terminals and has two spaced parallel rows of conductor pins which are embedded in a block of insulating material. Each pin has a first end portion and a second end portion, the axes of which are in spaced parallel relationship, and a bent intermediate portion. The bent intermediate portion is embedded within a block of insulating material. Pin/socket connectors of the general type shown in the Fox patent have been used for a long time, and in many industries. They have proliferated in recent years with the rapid growth in the computer, video, audio and communications industries. Despite the increased friction due to the multiple pins and sockets, this type of connection still has a tendency to uncouple, particularly when the cables are long. The Fox patent makes no suggestion about how to alleviate this problem and, in particular, its bent intermediate portions do not address the problem. Further, although Fox makes a reference to dies being used to fashion pins (column 1, line 28-30), no specific pin bending apparatus or method is suggested.
There have been many attempts to make the connection between connector elements more secure. People have tried hasp-like latching connectors and screws or threaded collars that bridge between two connector components, but these are expensive, cumbersome and may interfere with easily joining the connectors. In addition, they complicate and slow disconnection because they require unlatching or unscrewing before the two connector components can be separated. Adhesives have been used to join male and female connector elements. While adhesively joined connectors may stay joined, they cannot be easily selectively disconnected once the connection is made.
As evidenced by U.S. Pat. No. 5,427,552 (Zielinski et al.) spring elements have been used to make electrical connections more secure. Zielinski et al. disclose an electrical terminal for use in automobiles where a female terminal uses a contact spring to urge an inserted male contact blade into contact with a contact floor. Spring loaded female connectors of the general type represented by the Zielinski et al. patent require a spring member, thereby increasing the complexity of a connector. The Zielinski et al. patent also discloses a method of making the subject female terminal including, with reference to
FIG. 8
, bending the terminal by using a die to form a socket to receive a male contact; the male contact is not bent.
Two other methods for creating a secure electrical connection are disclosed in U.S. Pat. No. 4,427,252 (Lee et al.) and U.S. Pat. No. 4,784,619 (Blanchet). The Lee et al. patent discloses an electrical connector for effecting connection to a banana-type socket, including a connector body having an axially elongated male pin extended from one end. Threaded portions, e.g., a captive, internally threaded collar at the proximate end of the pin, are provided to create a secure connection. The Blanchet electrical connection module provides security by incorporating a locking catch and locking collar arrangement.
While the above-noted patents represent advances in the art of electrical connections, there is a need for a simple, inexpensive way to provide for secure electrical connections, particularly connections formed by connectors of the general type disclosed in the Fox patent and of the type used in linking computer and other electronic equipment.
SUMMARY
In one embodiment, the present invention provides an apparatus and method for deforming a normally straight electrical pin or selected number of pins to provide for a secure electrical connection, for example the connection between a motherboard and cable end connector.
While other embodiments are certainly possible, the present invention is well-suited for connecting intelligent drive electronics (“IDE”) and floppy drive cables, which may disconnect from a motherboard during shipping. The present invention can also be used in small computer system interface (“SCSI”) connections for connecting scanners, hard drives and other equipment. Shipment of such equipment with connectors in place may result in the male and female connector elements becoming loose and separating. Also, after shipping and installation, the weight of longer cables can cause pulling, leading to disconnection. The security of the conventional connection between an IDE connector and headers mounted on a motherboard can vary, depending on the type of contact (e.g., dual or single beam) and contact material used, but even in the case of multi-pin dual beam contacts, there is a tendency for the cables to come uncoupled. The present invention attempts to reduce this tendency conveniently and inexpensively.
The apparatus may include a frame, a die pivotally coupled to the frame and an operating member pivotally coupled to the frame and the die, whereby moving the operating member moves the die into contact with at least one pin to deflect or bend it.
In one embodiment, the support frame is generally vertical, comprising two generally parallel support members, each having a top end and a bottom end. The die is generally flat, rectangular and solid, having two generally parallel flat side surfaces, a first, top edge, a bottom edge generally parallel to the first, top edge, and two generally parallel side edges, each of which is generally perpendicular to the top and bottom edges. The die is supported generally between the two support members, with its two side edges aligned with the support members, and is pivotally coupled to the two support members adjacent to its bottom edge.
The operating member is generally congruent with respect to the die, being generally flat, rectangular and solid. Like the die, it has a top edge, a bottom edge generally parallel to the top edge, two generally parallel side edges, each of which is generally perpendicular to the top and bottom edges, and a mid-portion. The operating member is positioned above the die, between the two support members, with its side edges generally aligned with the support members. Thus, the die and operating member are generally co-planar. The operating member is pivotally coupled to the two support members, the pivotal coupling generally at the mid-portion of the operating member and adjacent to the top end of the support members. It is also coupled to the die generally at the bottom edge of the operating member and the first or top edge of the die, whereby moving the operating member moves the die.
In one embodiment, the present invention includes an adjustable die travel stop carried by the support frame for selectively controlling the movement of the die.
One advantage of the embodiments of the present invention is that equipment/cable and other connections remain more secure during shipping and after installation, even when the cables are very long. Another advantage is that the header or motherboard is not damaged during the operations to implement the embodiments of the inventions, because the deflecting load or force is exerted substantially only on the metal pin connector. While not limited to such uses, the invention is well suited for use on single and dual beam connectors because it enhances connective security by increasing the friction generated by the deflected pin on its receptacle and,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Header pin pre-load apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Header pin pre-load apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Header pin pre-load apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453891

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.