Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices
Reexamination Certificate
2001-04-04
2003-09-23
Dougherty, Thomas M. (Department: 2834)
Electrical generator or motor structure
Non-dynamoelectric
Piezoelectric elements and devices
C310S026000, C360S292000, C360S294400, C360S294600
Reexamination Certificate
active
06624553
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a head suspension assembly for a magnetic disk drive, and more particularly to a microactuator for moving a read/write head relative to a mounting region of the head suspension assembly
2. Description of the Related Art
Information storage devices typically include a read/write head for reading and/or writing data onto a storage medium such as a magnetic disk within a rigid disk drive. An actuator mechanism driven by a servo control is used to position the head at specific radial locations or tracks on the magnetic disk. Both linear and rotary type actuators are well known in the art. Between the actuator and the head, a head suspension is required to support the head in proper orientation relative to the disk surface.
The head suspension carries the read/write head so that the head can “fly” over the surface of the rigid disk while the disk is spinning. The head is typically located on a head slider having an aerodynamic design so that the head slider flies on an air bearing generated by the spinning disk. The combination of the head slider and the head suspension is referred to as a head suspension assembly. The head suspension includes a load beam which has a radius or spring section, a rigid region, and a flexure. The flexure is a spring or gimballing connection typically included between the head slider and the rigid section of the load beam so that the head slider can move in the pitch and roll directions of the head to accommodate fluctuations of the disk surface. The mounting region of the load beam is typically attached to an actuator arm which supports the suspension assembly over the rotating disk. A base of the actuator arm is coupled to an actuator.
When no external forces (with the exception of gravity) are acting on the head suspension assembly to deform it in any way, it is in a “neutral un-loaded” state. When the head is flying over the spinning surface of a disk and is acted upon only by the force of the air bearing generated by the spinning disk, the head suspension assembly is in a “neutral loaded” state. However, the head suspension assembly can experience deformations that cause motion of the head away from either the neutral loaded or neutral un-loaded positions.
One way these deformations can occur involves a head suspension's tendency to bend and twist in a number of different modes, known as resonant frequencies, when driven back and forth at certain rates. Any such bending or twisting of a suspension can cause the position of the head to deviate from its neutral loaded or neutral un-loaded position. Alternatively, beneficial deformations of the suspension can be induced using a secondary-actuation or microactuation device designed to move the head relative to the remainder of the head suspension assembly.
Employment of secondary actuators working in tandem with primary Voice Coil Motors (VCMs) is an option available for obtaining high servo bandwidths in disk drives. In the case of slider-based designs, their inherently high bandwidths (by virtue of their low mass and inertia) help to overcome virtually all the lower structural modes present in the head suspension assembly. However, this would be possible only if the secondary actuator provides sufficient gain (displacement) to reject the track run-out disturbances at the required frequencies. It must also be remembered that this gain must be effected with minimal use of voltage and current because of the complexities associated with power delivery and dissipation within microstructures.
Another challenge faced by microactuator designers is provision of high degrees of in-plane shock resistance to the microactuator, as it conflicts with the aim of achieving high displacement gains in the cross-track direction. The designers eager to enhance the actuator gain compromise the lateral stiffness (in-plane stiffness in the cross-track direction) which lowers the shock-resistance of the assembly drastically. Mass is also a factor that lowers the shock resistance
Also, there are issues like contamination control, reliability etc. which are major concerns with the slider-based electrostatic actuators. While improving such features, care must also be taken that they do not reflect on the overall cost of the system. In summary, it might be stated that it is desirable to have high displacement microactuators with high bandwidth and high shock resistance.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, there is provided a microactuator for positioning a read/write head relative to a head suspension assembly of a disk drive, comprising a substantially C-shaped member having first and second ends, each end having an end face with the end face of one end being opposed to and spaced from the end face of the other, wherein the member is resilient and responsive to an applied magnetic or electric field, with end face to end face separation being controllable by the magnetic or electric field applied.
The substantially C-shaped member may be planar and may have a substantially annular or toroidal body with an air gap or opening communicating between the radial inner and outer peripheries and providing the first and second ends. Being resilient, the member is able to deform elastically in response to the applied magnetic or electric field, and return to its original shape once the field is removed.
The substantially C-shaped member may comprise a piezoelectric material. The member may comprise an inner region and an outer region, with the outer region surrounding the inner region, the outer region being adapted to expand relative to the inner region, or the inner region being adapted to contract relative to the outer region, in response to an applied electric field. Such relative expansion/contraction of the inner and outer regions between the first and second ends may be used to control the end face to end face separation of the first and second ends.
The member may comprise a piezoelectric bimorph. With this arrangement, the inner and outer regions are selected to expand/contract differently under the same electric field. In this way, a given applied field tends to produce different internal movements in the inner and outer regions, giving rise to a net change in the end face to end face separation. The inner and outer regions may comprise different piezoelectric materials, or possibly the same material but polarized oppositely.
The member may comprise a piezoelectric monolith, uniformly polarized with pairs of electrodes adapted to apply a first electric field to the inner region and a second electric field to the outer region. The first and second regions may be differentially energised to control the deflection of one end with respect to the other.
The microactuator may further comprise a further substantially C-shaped member or the kind hereinbefore defined, the further member being stacked above the aforementioned member to form a multi-layer structure.
In another embodiment, the substantially C-shaped member may comprise a body of a soft magnetic material (i.e. ferromagnetic material). The body may have a cable wound around the body, with an electric current carried by the cable inducing a magnetic field in the body to control end face to end face separation.
In accordance with a second aspect of the present invention, there is provided a head suspension assembly for a magnetic disk drive, comprising a load beam, a head slider and a microactuator for positioning the head slider relative to a rigid mounting end of the load beam, the microactuator comprising a substantially C-shaped member having first and second ends, each end having an end face with the end face of one end being opposed to and spaced from the end face of the other, wherein the member is resilient and responsive to an applied magnetic or electric field, with end face to end face separation being controllable by the magnetic or electric field applied. Various embodiments of the microactuator for the head suspension assem
Guo Guoxiao
Sivadasan Kodikkunnathukulangara
Data Storage Institute
Dougherty Thomas M.
LandOfFree
Head suspension assembly for magnetic disk drives does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Head suspension assembly for magnetic disk drives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Head suspension assembly for magnetic disk drives will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3072898