Head side gas bag restraint system for vehicle occupants

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S728200, C280S728300, C280S751000

Reexamination Certificate

active

06170861

ABSTRACT:

TECHNICAL FIELD
The invention relates to a head side gas bag restraint system for vehicle occupants.
BACKGROUND OF THE INVENTION
A generic gas bag restraint system is known from DE 296 05 896.3. Here, the gas bag is an elongated head gas bag which extends from approximately the A column of the vehicle to approximately the C column. The receiving container, in turn, is a flexible mounting hose into which the folded gas bag is placed. On unfolding, the mounting hose, which is splitted in longitudinal direction, expands and frees the path for the gas bag. A disadvantage to this solution is that no so-called ejection channel is provided, as is known in rigid receiving containers. This ejection channel determines the unfolding direction for the start of the unfolding process. The known rigid containers have either an open or a closed U-shape in cross-section. With the closed U-shape, the container is closed by a flap which is swung open on unfolding of the gas bag. For example by providing limiting straps or stops, the opening angle of the flap can be limited, which makes it possible that not only the inner wall and the outer wall define the ejection channel, but rather in addition also the flap as extension of the inner or the outer wall.
In particular accident situations, it can occur that the gas bag is not unfolded, the occupant, however, hits against the flap or the inner wall of the container. In particular with a container secured to the roof frame, head contact with the container can occur. The containers are in fact usually arranged under a covering of the roof frame, which covering has a thin foam layer, however this covering can not prevent head injuries.
BRIEF SUMMARY OF THE INVENTION
The invention provides a gas bag restraint system, in particular a head gas bag restraint system, which avoids such injuries to the occupant. The head side gas bag restraint system according to the present invention comprises a gas bag, a receiving container for the gas bag, which container is to be secured to the vehicle, and an ejection channel for gas bag unfolding in the case of restraint. The receiving container has an outer wall, an inner wall facing the passenger compartment in an installed state of the system, and at least one flap which closes the container in a non-activated state of the system and which swings open in the case of restraint. The channel is formed between the outer and inner walls, the flap having structures arranged thereon. The structures have recesses or cavities and are plastically deformed by the impact of the head of the occupant.
The wall which is provided between adjacent recesses or cavities and is made of a plastically deformable material may be displaced into the recesses or cavities in the case of a lateral impact, so that a high energy absorbing capacity is provided.
In the gas bag restraint system according to the invention, the flap itself absorbs a portion of the energy of the head, so that the risk of injury can be reduced. The additional padding, hitherto provided, in the region of the covering of the container can be completely dispensed with, so that the special design of the container does not necessarily have to lead to the reduction of headroom, but rather an increase in headroom can even be achieved. The invention not only reduces the risk of injury when the gas bag is not released, but also when it is released, because in the systems hitherto the swung-open flap was able to point towards the occupant and the occupant was able to hit against this flap. A soft flap, however, distinctly reduces the risk of injury in this case as well. Preferably, the ribs are an integral component of the flap, that is, the entire flap including the ribbed structure is designed in one piece. It may thus be produced by foaming or injection-molding, for example.
In the preferred embodiment it is provided for that the flap has a ribbed structure and that the recesses or cavities are provided between the ribs. Since the cavities, which unlike the recesses are closed toward the outside, and the recesses may take any shape, the ribs may accordingly be of any desired geometry. They may, for example, extend linearly or in a curved manner if spherical cavities are provided, to give an example, The notion of a ribbed structure may also include a kind of honeycomb structure.
An important aspect for achieving a high energy absorbing capacity is the orientation of the ribs relative to the direction of force introduction. In fact, the ribs preferably have to extend transversely to the direction of force introduction, in the present case transversely to the direction of the head impact. A plurality of cavities or recesses and ribs should be arranged one after the other in the direction of force introduction, for the ribs to be able to be shifted into the cavities or recesses. If the ribs were oriented in the direction of force introduction, the head of the occupant would simultaneously hit against several ribs in the region of the ends thereof, so that they would have to kink in order to yield plastically.
In accordance with another aspect of the invention, the cavity is formed by injection-molding around a hollow body which is inserted in the flap. This is a very cost-effective manufacturing variant.
According to the invention, the specific structure of the flap and the orientation thereof in relation to the direction of force introduction permit a maximum deformation path which corresponds to almost the entire width of the flap and thus the distance between the inner and outer walls. This is in particular the case when not only the flap is constructed so as to be flexible and energy-absorbing, but also the entire container is deformable by the inner wall being deformable elastically or plastically up to abutment against the outer wall, whereby even more energy can be absorbed.
Since the container can also extend in a curved manner, it is advantageous if several flaps are provided arranged one after another, by which an easy closing and opening of the flaps is ensured.


REFERENCES:
patent: 5791683 (1998-08-01), Shibata et al.
patent: 5836641 (1998-11-01), Sugamoto et al.
patent: 5857702 (1999-01-01), Suga et al.
patent: 5921575 (1999-07-01), Kretshmer et al.
patent: 5941558 (1999-08-01), Labrie et al.
patent: 5992914 (1999-11-01), Gotoh et al.
patent: 296 03 316 (1996-08-01), None
patent: 0705738 (1996-04-01), None
patent: 2261636 (1993-05-01), None
patent: 07117605 (1995-05-01), None
patent: 10-138861 (1998-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Head side gas bag restraint system for vehicle occupants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Head side gas bag restraint system for vehicle occupants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Head side gas bag restraint system for vehicle occupants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2543053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.